Occupational epidemiology in practice: understanding pesticide-cancer risk in the AHS cohort and learned lessons

Richard Remigio, Ph.D., M.Phil., MS

Occupational and Environmental Epidemiology Branch
Division of Cancer Epidemiology and Genetics
North Carolina Occupational Safety and Health Education and Research Center, University of North Carolina-Chapel Hill
Pesticide exposures
Pesticide exposure everywhere

- 6 billion lbs. of pesticides were applied worldwide in 2011 & 2012
- 11% growth in pesticide use per year 1950-2000
- >90% of US Population has detectable levels of pesticide or metabolites in urine or blood
- Worldwide over 1 billion people are occupationally exposed to pesticides
Pesticides

- Encompass many diverse chemical and chemical families
 - Herbicides
 - Insecticides
 - Fungicides
 - Fumigants
 - Rodenticides

Atwood & Paisley-Jones. USEPA. 2017
Human health effects

- Health effects of pesticides depend on the type of pesticide
- Active ingredients from pesticides subject to toxicity testing and registration
 - Experimental, in vitro study designs
- Not much post-market health effect studies available in the US

Kalyabina et al. Tox Reports. 2021
Human health effects

- Limited studies among humans
- Systematic reporting for accidental poisoning/acute exposures
 - National Poison Data System, OPP Incident Data System, National Pesticide Info Center, CDC/NIOSH SENSOR-Pesticides, CA Pesticide Illness Surv Program
- Human population studies
 - Different study designs for many different questions
 - Particularly for chronic diseases
Risk Assessment of Pesticides by USEPA

- USEPA, Office of Pesticide Programs
 - Pesticide regulation enshrined by the Federal Insecticide, Fungicide, Rodenticide Act (FIFRA)
 - Review pesticides registration on a rolling basis
- Classification of Carcinogens, Weight of Evidence Approach (2005)
 - Carcinogenic to humans
 - Likely to be carcinogenic to humans
 - Suggestive evidence of carcinogenic potential
 - Inadequate information to assess carcinogenic potential
 - Not likely to be carcinogenic to humans pesticide
Occupational vs. Environmental Pesticide Exposures

Occupational
- Manufacturing
- Mixing, loading, applying pesticides
- Working in treated fields/re-entry tasks
- Intermittent, “higher” exposures

Environmental
- Diet, drinking water, agricultural drift
- Home, lawn, and pet applications
- “Lower” exposures
Pesticide exposure assessment
Characterizing Exposure to Individual Pesticides

- Chemical specificity
 - Toxicity differs among chemicals in the same class
 - By active ingredient
- Quantitative estimate of exposure
- Intensity of exposure related to tasks, use of PPE, application method
- Mixtures?
Practical Consideration in Exposure Assessment

- Who is exposed (and who to study)?
 - Farmers/farm-owners
 - May know about the pesticides/crops
 - May or may not apply themselves
 - Farmworkers—may be highly exposed
 - Short-term work?
 - Knowledge of pesticides?
 - Regional differences based on specific farm practices
 - Intensity of exposures
Pesticide Exposure Assessment Methods

- Manufacturers
- Crop-Based Exposure Assignment
- Self-report assessment/questionnaire for individual chemicals
Assessments based on Biological Measurements

- Most pesticides in use today are not persistent
 - Urinary measurements reflect exposure in hours/days
 - Usefulness for cumulative or long-term exposure?
- Exceptions:
 - Organochlorine insecticides
 - Lindane: β-HCH, γ-HCH
 - DDT: p,p'-DDE, p,p'-DDT
 - Reflect whole body burden
How Can We Study Effects of Pesticides?

- Need Information on specific active ingredients
- Highly exposed population
- Large population with sufficient follow-up (cohort) or adequate number of exposed cases (case-control)
- Accurate characterization of exposure for exposure-response associations
Agricultural Health Study cohort
Agricultural Health Study
NCI NIEHS EPA NIOSH

- 57,310 licensed pesticide applicators in Iowa and North Carolina (20,518 in NC)
- 32,345 spouses of applicators (10,307 in NC)
- Iowa and North Carolina - diverse agricultural practices

AHS STUDY OVERVIEW

- Regular linkages to cancer and mortality registries*
- Linkages to identify end-stage renal disease**
- Linkages to identify Medicare claims data**

BEEA (2010-2018)
n=1600 AHS participants
In-person interview, including recent pesticide use
Blood, urine and house dust

www.aghealth.nih.gov

Alvanja et al. EHP. 1996
AHS Exposure Assessment Approach

- Apply questionnaire data on individual active ingredients for etiologic analyses
- Self-report duration and frequency at enrollment
- Self-report use again since enrollment at follow-up
- Applicators provide reliable (Blair 2002) and valid (Hoppin 2002) responses related to pesticide use
Cumulative Exposure

- **Phase I – lifetime days of use**

<table>
<thead>
<tr>
<th>Name of Pesticide</th>
<th>A. Have you ever personally mixed or applied this pesticide?</th>
<th>B. How many years did you personally mix or apply this pesticide?</th>
<th>C. In an average year when you personally used this pesticide, how many days did you do it?</th>
<th>D. When did you first personally use this pesticide?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbicides (pesticides used to kill weeds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Aatrex, Atranex or other atrazine products</td>
<td>[a_herbicide_cd1]</td>
<td>[a_herbicide_yr1]</td>
<td>[a_herbicide_day1]</td>
<td>[a_herbicide_fu1]</td>
</tr>
<tr>
<td>- No</td>
<td>- Yes</td>
<td>1 year or less</td>
<td>Less than 5 days</td>
<td>Before 1960</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2–5 years</td>
<td>5–9 days</td>
<td>In the 1960s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6–10 years</td>
<td>10–19 days</td>
<td>In the 1970s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11–20 years</td>
<td>20–39 days</td>
<td>In the 1980s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21–30 years</td>
<td>40–59 days</td>
<td>In the 1990s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>More than 30 years</td>
<td>60–150 days</td>
<td>Mark here if you used this pesticide last year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>More than 150 days</td>
<td></td>
</tr>
</tbody>
</table>
AHS Exposure Metrics used in Health Outcome Analyses

- Ever Use
- Frequency of Use
- Cumulative Exposure (Lifetime days of use)
 - Years * Days/year applied
- Intensity-Adjusted Cumulative Exposure
 - Cumulative Exposure * Intensity Score
Intensity-Adjusted Cumulative Exposure

- Intensity-weighting algorithm
 - Factors that affect exposure
 - Application Method (Apply)
 - Mixing chemicals (Mix)
 - Repair of equipment (Repair)
 - Use of Personal Protective Equipment (PPE)

Intensity Score = (Apply + Mix + Repair) * PPE

- Field studies
 - (Hines 2008 et al., Ann Occ Hyg, Thomas et al., JESEE, 2010A, Thomas et al., JESEE, 2010B)

Intensity score * Lifetime Days = Intensity-weighted Lifetime Days (IWLD)
Exposure metric comparison

<table>
<thead>
<tr>
<th>Lifetime number of exposure days</th>
<th>N</th>
<th>RR</th>
<th>95% CI</th>
<th>Intensity-weighted exposure days</th>
<th>N</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No exposure</td>
<td>199</td>
<td>1.00</td>
<td>Referent</td>
<td>No exposure</td>
<td>199</td>
<td>1.00</td>
<td>Referent</td>
</tr>
<tr>
<td><20</td>
<td>32</td>
<td>1.11</td>
<td>0.75 to 1.65</td>
<td><358</td>
<td>22</td>
<td>1.09</td>
<td>0.61 to 1.53</td>
</tr>
<tr>
<td>20.0–38.8</td>
<td>16</td>
<td>0.76</td>
<td>0.44 to 1.30</td>
<td>369–1800</td>
<td>25</td>
<td>0.99</td>
<td>0.66 to 1.52</td>
</tr>
<tr>
<td>>38.8</td>
<td>36</td>
<td>1.60</td>
<td>1.11 to 2.31</td>
<td>>1800</td>
<td>37</td>
<td>1.41</td>
<td>0.98 to 2.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P_{trend}=0.02</td>
<td></td>
<td></td>
<td></td>
<td>P_{trend}=0.08</td>
</tr>
</tbody>
</table>

Jones et al. OEM. 2014

Insecticide-impregnated ear tag on cow

Crop pesticide applicator wearing PPE
AHS Cancer Incidence

Lower overall cancer incidence

- **Reduced cigarette** smoking
- **Increased** physical activity
- Healthy worker effect

Some cancer sites are elevated compared to the general population

Farming exposures may contribute to excess cancer risk

- Pesticides, diesel engine exhaust, UV radiation, bacteria and viruses

Standardized incidence ratio

\[
SIR = \frac{\text{Observed number of cases in study population}}{\text{Expected number of cases in the study population}}
\]

Expected number of cases = person – years in the study population * adjusted cancer rates in reference population

Koutros et al. OEM. 2010, Lerro et al. Cancer Causes & Control. 2019
Cancer incidence in the Agricultural Health Study after 20 years of follow-up among AHS private applicators

<table>
<thead>
<tr>
<th>Site</th>
<th>N</th>
<th>SIR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Sites</td>
<td>8256</td>
<td>0.91</td>
<td>0.89, 0.93</td>
</tr>
<tr>
<td>Lip</td>
<td>63</td>
<td>2.22</td>
<td>1.71, 2.84</td>
</tr>
<tr>
<td>Esophagus</td>
<td>102</td>
<td>0.71</td>
<td>0.58, 0.86</td>
</tr>
<tr>
<td>Colon and Rectum</td>
<td>842</td>
<td>0.95</td>
<td>0.89, 1.02</td>
</tr>
<tr>
<td>Liver and Bile Duct</td>
<td>78</td>
<td>0.56</td>
<td>0.45, 0.70</td>
</tr>
<tr>
<td>Pancreas</td>
<td>183</td>
<td>0.83</td>
<td>0.72, 0.96</td>
</tr>
<tr>
<td>Larynx</td>
<td>66</td>
<td>0.48</td>
<td>0.37, 0.62</td>
</tr>
<tr>
<td>Lung and Bronchus</td>
<td>807</td>
<td>0.51</td>
<td>0.48, 0.55</td>
</tr>
<tr>
<td>Prostate</td>
<td>3169</td>
<td>1.15</td>
<td>1.11, 1.19</td>
</tr>
<tr>
<td>Testis</td>
<td>45</td>
<td>1.31</td>
<td>0.96, 1.75</td>
</tr>
<tr>
<td>Urinary Bladder</td>
<td>411</td>
<td>0.70</td>
<td>0.63, 0.77</td>
</tr>
<tr>
<td>Thyroid</td>
<td>82</td>
<td>1.15</td>
<td>0.92, 1.43</td>
</tr>
<tr>
<td>Chronic Lymphocytic Leukemia</td>
<td>166</td>
<td>1.17</td>
<td>1.00, 1.36</td>
</tr>
<tr>
<td>Diffuse Large B-Cell Lymphoma</td>
<td>145</td>
<td>1.16</td>
<td>0.98, 1.37</td>
</tr>
<tr>
<td>Follicular Lymphoma</td>
<td>81</td>
<td>1.14</td>
<td>0.91, 1.42</td>
</tr>
<tr>
<td>Multiple Myeloma</td>
<td>146</td>
<td>1.18</td>
<td>0.99, 1.38</td>
</tr>
<tr>
<td>Acute Myeloid/Monocytic Leukemia</td>
<td>86</td>
<td>1.29</td>
<td>1.03, 1.59</td>
</tr>
</tbody>
</table>

Lerro et al. Cancer Causes & Control. 2019
Cancer incidence in the Agricultural Health Study after 20 years of follow-up among AHS spouses

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>N</th>
<th>SIR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Sites</td>
<td>3720</td>
<td>0.89</td>
<td>0.86, 0.92</td>
</tr>
<tr>
<td>Esophagus</td>
<td>9</td>
<td>0.51</td>
<td>0.23, 0.97</td>
</tr>
<tr>
<td>Colon and Rectum</td>
<td>346</td>
<td>0.87</td>
<td>0.78, 0.96</td>
</tr>
<tr>
<td>Pancreas</td>
<td>71</td>
<td>0.69</td>
<td>0.54, 0.87</td>
</tr>
<tr>
<td>Peritoneum</td>
<td>21</td>
<td>1.80</td>
<td>1.11, 2.75</td>
</tr>
<tr>
<td>Lung and Bronchus</td>
<td>252</td>
<td>0.41</td>
<td>0.36, 0.46</td>
</tr>
<tr>
<td>Melanoma of the Skin</td>
<td>177</td>
<td>1.21</td>
<td>1.04, 1.40</td>
</tr>
<tr>
<td>Breast</td>
<td>1389</td>
<td>1.05</td>
<td>0.99, 1.11</td>
</tr>
<tr>
<td>Cervix Uteri</td>
<td>29</td>
<td>0.50</td>
<td>0.34, 0.72</td>
</tr>
<tr>
<td>Corpus and Uterus</td>
<td>323</td>
<td>1.13</td>
<td>1.01, 1.27</td>
</tr>
<tr>
<td>Ovary and Fallopian Tube</td>
<td>122</td>
<td>0.87</td>
<td>0.72, 1.04</td>
</tr>
<tr>
<td>Thyroid</td>
<td>118</td>
<td>1.20</td>
<td>0.99, 1.44</td>
</tr>
<tr>
<td>Chronic Lymphocytic Leukemia</td>
<td>43</td>
<td>0.88</td>
<td>0.63, 1.18</td>
</tr>
<tr>
<td>Diffuse Large B-Cell Lymphoma</td>
<td>70</td>
<td>1.23</td>
<td>0.96, 1.55</td>
</tr>
<tr>
<td>Marginal Zone Lymphoma</td>
<td>25</td>
<td>1.46</td>
<td>0.95, 2.16</td>
</tr>
<tr>
<td>Follicular Lymphoma</td>
<td>54</td>
<td>1.33</td>
<td>1.00, 1.74</td>
</tr>
<tr>
<td>Acute Myeloid/Monoctic Leukemia</td>
<td>33</td>
<td>1.21</td>
<td>0.83, 1.69</td>
</tr>
</tbody>
</table>

Lerro et al. Cancer Causes & Control. 2019
Pesticide-cancer risk analysis: Atrazine
Atrazine

- Second most applied herbicide in the US
- Commonly applied on corn, sorghum, and sugar cane
- Water soluble and persistent
 - Prevalent contaminant in soil and water
- Known endocrine disruptor
- Currently banned in the European Union (EU)
Atrazine cancer epidemiology

• Few epidemiologic studies
• Suggestive associations with:
 • Prostate (MacLennan et al. *J Occup Environ Med.* 2002)
 • Kidney (Andreotti et al. *EHP.* 2020)
 • Other sites (e.g., stomach, ovarian, pediatric cancers)
• Heterogeneity in study design, exposure assessment, and power
• Last comprehensive cancer epidemiological study focused on occupational exposures among farmers conducted in 2011, \(n=3,146 \) (Beane Freeman et al. *EHP.* 2011)
Re-examine the association between occupational atrazine use and cancer risk within the AHS cohort

6,631 exposed cancer cases- a two-fold increase since the 2011 study
Updated cumulative exposures
Unlagged Atrazine Use and Risk of **Lung Cancer** in AHS Applicators

Adjusted for age, state, education, smoking, alcohol, family history of cancer, alachlor, metolachlor, trifluralin and 2,4-D

Remigio et al.. In revision
Unlagged Atrazine Use and Risk of Aggressive Prostate Cancer in AHS Applicators

n=558 exposed cases

Aggressive prostate

p-trend= 0.13

Aggressive prostate cancer ~ Gleason score at or above 8 | Grade or stage at or above 3 | Prostate cancer as cause of death

Remigio et al.. In revision

Adjusted for age, state, education, smoking, alcohol, family history of cancer, alachlor, metolachlor, trifluralin and 2,4-D
25-year Lagged Atrazine Use and Risk of **Kidney Cancer** in AHS Applicators

n=224 exposed cases

Adjusted for age, state, education, smoking, alcohol, family history of cancer, alachlor, metolachlor, trifluralin and 2,4-D

Remigio et al.. In revision
25-year Lagged Atrazine Use and Risk of **Pharyngeal Cancer** in AHS Applicators

n=31 exposed cases

p-trend = 0.06

Adjusted for age, state, education, smoking, alcohol, family history of cancer, alachlor, metolachlor, trifluralin and 2,4-D

Remigio et al.. In revision
More Results

- Additional suggestive increased risk by age groups
 - Below 50 years: NHL (ever), and significant p-trends with subtypes (Mature B-cell lymphoma)
 - Below 60 years: aggressive prostate (p-trend=0.001, p-interaction=0.0005)
 - 70 and older: esophageal (ever)

- No meaningful associations were found in other sites
Evidence of biological plausibility from Corn Farmer Study

- Atrazine exposure can influence oxidative stress (a key characteristic of a carcinogen)
- A molecular epidemiologic study found a short-term relationship between atrazine exposure and 8-hydroxy-2'-deoxyguanosine (8-OhdG) in analyses restricted to individuals with measures of atrazine mercapturate above the detection limit

Lerro et al., Environ Mol Mutagen. 2017
Pesticides and Cancer

- Pesticide use and lung cancer risk (Bonner et al., EHP 2017)
- Insecticide use and breast cancer in AHS spouses (Engel et al., EHP 2017)
- Alachlor use and cancer incidence (Lerro et al., JNCI 2018)
- Glyphosate use and cancer incidence (Andreotti et al., JNCI 2018)
- Organochlorines and cancer risk in AHS spouses (Louis et al., Environ Health 2018)
- Pesticide use and aggressive prostate cancer (Pardo et al., 2020)
- Pesticide use and breast cancer among AHS spouses (Werder et al., Environ Health 2020)
- Pesticide use and kidney cancer (Andreotti et al., Environ Epi 2020)
- Dicamba use and cancer incidence (Lerro et al., Int J Epi 2021)
- Pesticide use and thyroid cancer among AHS males (Lerro et al. Environ Intl 2021)
- Pesticide use and MGUS (Hofmann et al., EHP 2021)

Pesticides and Other Outcomes

- Thyroid disease
- Allergic and non-allergic wheeze
- Olfactory impairment
- Rheumatoid arthritis
- Parkinson’s Disease
- Sleep Apnea
- Shingles

AHS data contributed to more than 139 publications in last 5 years; 382 since 1996
Learned Lessons

- Data and work behind estimating long-term exposures
- Quality results dependent on quality data (lines of evidence)
 - Feeds into weight of evidence approaches for determining risk
- New methodologies are out there: Mixtures
Acknowledgements

National Cancer Institute
Laura Beane Freeman
Jonathan Hofmann
Gabriella Andreotti
Jay Lubin
Paul Albert
Patricia Erickson
Stella Koutros
Lauren Hurwitz

National Institute of Environmental Health Sciences
Dale Sandler
Christine Parks

richard.remigio@nih.gov
For More AHS Information:

www.aghealth.nih.gov