Bayesian Inference with Incomplete Likelihood or Prior: Employing Quick-and-Dirty Bayes Theorems and Prior Impact Assessments

Xiao-Li Meng, PhD
 Whipple V. N. Jones Professor of Statistics Harvard University

Abstract

The Bayesian paradigm provides a comprehensive and coherent framework to model variations, propagate uncertainties, and assess risks. But its full advantage comes with a heavy price: a mathematically precise description of both the likelihood function andthe prior distribution. Neither is possible in most practicewithout making up unverifiable assumptions. Two principled (corner-cutting) strategies to address such impossibilities are (1) working with incomplete specifications to make imprecise but honest probability assessments, and (2) conducting sensitivity or scenario analyses to assess theimpactof the scenarios. This talkdemonstrates the powerof the first strategy in the context of assessing risks for rare events via several quick-anddirty Bayestheorems (Meng, 2022), inspired by a weekly puzzler from the popular radio show Car Talk. It then presents a practical approach to the second strategy in the context ofquantifying the impact of prior scenarios;using an asymptotic formula or a bootstrap-like approximation (Reimherr, Meng, Nicole, 2021) to answer the question: what percentage of the posterior precision comes from the prior postulation instead of the likelihood? Both the quick-and-dirty Bayes theorems and prior impact assessmentsare as basic (or as fundamental) as the Bayes theorem itself, and yet their developments revealed severalunexpected phenomenon and insights.

Thursday October 13, 2022, 3:30-4:30 PM Eastern 133 Rosenau Hall
 Virtual using link and info below.

Link: https://unc.zoom.us/j/92602267820?pwd=YW1wN1pjdUNVd1A4TTI2OStmVHBjQT09
Meeting ID: 92602267820 Passcode: 533114

GILLINGS SCHOOL OF GLOBAL PUBLIC HEALTH

