Where is SARS-CoV-2 and how does it get there?
Current and future research on environmental surveillance and transmission

Part 2. SARS-CoV-2 in aerosols

direct contact

indirect contact

close-range only (<2 m)

large droplets

aerosols
Aerosols: liquid or solid particles suspended in air (or other gas)

Droplets:
So large, Hard to remain airborne (liquid)

Like cloud or rain droplets

Size Matters

• Airborne virus is not naked!

• Size determines
 • Lifetime in the atmosphere
 • Where it deposits in the respiratory system
Aerosol generated by Breathing, speaking, and coughing
High air velocity shears respiratory fluids during expiration

Modes:
< 0.3 (possible)
0.8 µm (largest mode)
2-4 µm (two modes)
100 µm (smaller)

Droplets (100 µm):
By number, 0.8µm mode is 100 times larger (coughing)

Breathing
Speaking/singing
Coughing

Morowska et al.
Journal of Aerosol Science
Volume 40, Issue 3, March 2009,
Pages 256-269
Relative emission rate of aerosol particles between activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Concentration (cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breathing (nose/mouth)</td>
<td>b-n-m</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustained “aah” (voiced/whispered)</td>
<td>aah-v-p</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Counting (voiced/whispered)</td>
<td>c-v-p</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough</td>
<td>cough</td>
</tr>
</tbody>
</table>

Infected people *could* emit viable CoV-2-containing aerosol all the time

CoV-2 is present in the respiratory tract (Zhu et al., 2020)

Booth et al (2005) established that hospitalized SARS patients emit viable aerosolized virus

CoV-2 has been measured in hospital aerosol:
- infectious, replicating virions measured in three <1 μm aerosol samples in hospital rooms (Santarpia et al., *unrefereed preprint* 2020)
- And in 4 samples from a pair of patients (Lednicky et al.,)

Asadi et al. (2020) *Aerosol Sci. Technol.*, 54, 635-638
Viability of aerosolized CoV-2. Papers report half-life of 1 to several hours. (for particles < 5 µm)

Viruses remain viable longer at lower RH (influenza); lower temps

Collection of **viable** virus aerosol (MS2)

BioSpot's virus collection efficiency is 10-100 fold that of SKC BioSampler

Concentrated	Increased analysis sensitivity (LOD/LOQ)
High Efficiency	>95% for particles 5nm – 10µm diameter
Sample Quality	Maintain sample integrity and microorganism viability

BioSpot operates bundle of eight: Hence, total F is **8 Lpm**

Aerosol scientists: Turpin, Surratt, Baumann
Indoor air: Morrison, Turpin
Microbiologists: Brown, Stewart, Fisher
Infectious disease: Baric

Controlled experiments, well-characterized aerosols, varied environmental conditions

M. Pan et al., Journal of Applied Microbiology; 120, 805-815: 2016.
Size determines time airborne

Aerosol particles smaller than 1 \(\mu m \) can remain airborne for hours to days. Move with air flow

Solve:
\[
m \frac{dv}{dt} = \sum \text{forces}
\]

\[
settling \ velocity \ v = \frac{g D_p^2 \rho_p}{18 \mu}
\]

14 hours for 0.8 \(\mu m \) dia. particle
1 minute for 30 \(\mu m \) dia. particle
Virus Dynamics in Indoor Air

estimate concentration of virus-containing particles (number conc.)

\[\frac{dV}{dt} = S - (k_{dep} + \lambda + k_{inact.})CV \]

\[C_{SS} = \frac{S}{V(k_{dep} + \lambda + k_{inact.})} \]

S = Aerosol-borne virus emission rate

\[\lambda = \frac{\text{Volumetric flow rate (ft}^3/\text{hr)}}{\text{Room volume (ft}^3)} \]

new home: 0.5 hr\(^{-1}\); Classrooms: 1 - 5 hr\(^{-1}\); Grocery: 5 hr\(^{-1}\); Hospital: 15 hr\(^{-1}\)
At steady state:

\[C = \frac{S}{V(k_{dep} + \lambda + k_{inact})} \]

Dose = \(C \times \text{InhR} \times \text{ET} \)

Time to reduce conc by 90%:
\[t = -\ln(0.1) \frac{1}{(k_{dep} + \lambda + k_{inact})} \]

\(t = 1.5 \text{ hr} \) for \(\lambda = 0.5 \text{ hr}^{-1} \)

\(t = 9 \text{ min} \) for \(\lambda = 15 \text{ hr}^{-1} \)

We know:
• <6 feet – higher droplet and aerosol conc.
• > 6 ft - longer you stay, higher your dose

We do not really know:
• The emission rate of viable virus
• The dose – response

(How high a dose would it take to be infected from across the room?)
Skagit Valley Chorale

Precautions to avoid contact
Transmission broadly spread across room
52 + index case of 61 total people

Authors estimate, from this and other singing events: $S = 1,000 – 10,000$ quanta/hr

(Buonano – predicts 1000 quanta/hr for speaking with “light activity, 300 quanta/hr for speaking at rest – greater than influenza and less than measles)

*a “quantum” is the dose of airborne droplet nuclei required to cause infection in 63% of susceptible persons

Dinner in China

Waiters not infected; families came different times

Miller et al. (2020) medRxiv, doi: https://www.medrxiv.org/content/10.1101/2020.06.15.20132027v2.full.pdf+html

Li et al. (2020) medRxiv, doi: https://www.medrxiv.org/content/10.1101/2020.04.16.20067728v1
Quanta emission rates for **influenza** have been reported to be in the range 15 - 128 quanta h\(^{-1}\)

for **measles**: 5,580 q h\(^{-1}\)

and for **tuberculosis**: 1.25 to 30,840 q h\(^{-1}\)
(the high value attributed to intubation)

OF COURSE: no way to know for certain that there was not other contact
It does not look like CoV-2 is spread through the air as easily as smallpox or measles.

Airborne Spread of Smallpox in the Meschede Hospital

Transmission of smallpox via airborne spread documented:
- Patient on ground floor of hospital with natural ventilation
- Spread for case patient to other patients on floor and higher level floors

Fenner. 1988. Fig. 4.9
Skagit Valley Chorale

810 m3 is 28,600 ft3
(ROS 133 is 24,200 ft3)

Inferred $S = 970$ quanta/hr
Higher than influenza, lower than measles

Increasing loss rate:
e.g., Ventilation or HEPA filter air cleaner

Masks – reduce emission rate
Skagit Valley Chorale

Effect of reduced exposure time
2.5 hr to 30 min

MASKS/testing: reducing S by a factor of 10 reduces probability by factor of 10

Source reduction is most effective approach

Figure 2. Probability of infection as a function of loss rates for varying event duration (D, h). A mean emission rate (970 q h⁻¹) and constant volumetric breathing rates of 1.0 m³ h⁻¹ were assumed.
Important lessons

• Wear a mask (even when more than 6 feet apart) - test/trace/isolate
• Maintain distance – fewer people (reduces potential total source)
• Do not linger
• Outdoors is safer than indoors

If aerosol transmission is important:
• CDC “exposed” definition (>15 min within 6 feet) is not adequate – could receive the same dose with long (e.g. 8 hour exposure) at > 6 feet

• Will COVID patients infect family members when recovering at home?
• Plexiglass shields only protect against droplets, not aerosols

Save singing for the shower :)
a combination of epidemic, mechanistic transmission, and dose-response modeling with available empirical data on mechanisms of SARS-CoV-2 dynamics and human behaviors

Mean estimates:
short-range 35% long-range 35% fomite transmission 30%

After quarantine began:
Short-range transmission dominated -- due primarily to aerosols, not droplets.
One more message:
CO₂ concentrations are often used as a surrogate measure of the adequacy of ventilation. They can be measured easily, increase with occupancy. The usual rule of thumb (pre-pandemic) is to keep CO₂ < 1000 ppm for adequate ventilation for the number of people inside.

Good article on portable air cleaners (below)

Materials for Masks (from a Cambridge University study):

Simple sew yourself mask patterns

https://masksnow.org/patterns/
https://tinyfleetingsteps.wordpress.com/2020/02/21/492/

Note: you can add filter material into the sleeve of your mask. It will help if the air goes through it and not around it.
Graph from https://smartairfilters.com/en/blog/best-materials-make-diy-face-mask-virus/
Based on: Davis et al. 2013