

The Perils of PFAS

Linda S. Birnbaum, Ph.D., D.A.B.T., A.T.S.

Scholar in Residence, Duke University

Scientist Emeritus and Former Director, NIEHS and NTP

Environmental Sciences and Engineering Centennial Gillings School of Public Health, UNC

February 12, 2021

The PFAS in ski wax helps athletes slide faster down the hill. Dmitry Molchanov/Shutterstock

CIENCE

MARCH 24, 2020

Toxic 'forever chemicals' flow freely through this river—and now its fish

The health effects of PFAS chemicals are still under scientific investigation, but North Carolina residents worry that the abundant substances puts them in danger too.

> In May 2018 in Fayetteville, North Carolina, D'Anthony Brown sets up fishing poles at the William O Huske Dam. This is the dam closest to the Chemours plant, which manufactures products containing PFAS chemicals. Chemours has been accused of polluting the water supplies of cities downriver. PHOTOGRAPH BY JEREMY M. LANGE

Burlington, Haw River Assembly reach agreement on PFAS contamination (NC Policy Watch, Oct. 23, 2020)

The Haw River, drinking water supply for the Town of Pittsboro, as seen from the Bynum Bridge (File photo: Lisa Sorg)

What are Per- and Polyfluoroalkyl Substances (PFAS)?

Total number of PFAS >9,000 chemicals

- Includes products, impurities and degradants
 - Teflon
 - Scotchguard
 - Aqueous Film Forming Foams (AFFFs)
- Many unknown formulation
- Resistant to grease, water & oil
 - Surfactants, stain repellants
 - Fire suppression AFFF
- Persistent, mobile and bioaccumulative
- Emergence of short-chain alternatives less well studied
 - Few studied same effects as long chains

Per- and Polyfluoroalkyl Substances (PFAS)

Perfluoroalkyl acids and perfluoroalkylether acids (PFAA), e.g.	Precursors to PFAA, e.g.
perfluoroalkyl carboxylic acids (PFCA), C_nF_{2n+1} -COOH, e.g. PFOA perfluoroalkane sulfonic acids (PFSA), C_nF_{2n+1} -SO ₃ H, e.g. PFOS perfluoroalkyl phosphonic acids (PFPA), C_nF_{2n+1} -PO ₃ H ₂ perfluoroalkyl phosphinic acids (PFPiA), $(C_nF_{2n+1})(C_mF_{2m+1})$ -PO ₂ H	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
perfluoroalkylether carboxylic acids (PFECA), e.g. $C_2F_5OC_2F_4OCF_2COOH$ perfluoroalkylether sulfonic acids (PFESA), e.g. $C_6F_{13}OCF_2CF_2SO_3H$	some hydrofluorocarbons (HFCs, e.g. $C_nF_{2n+1}-C_mH_{2m+1}$), hydrofluoroethers (HFEs, e.g. $C_nF_{2n+1}OC_mH_{2m+1}$) and hydrofluoroolefins (HFOs, e.g. $C_nF_{2n+1}-CH=CH_2$); perfluoroalkyl ($C_nF_{2n+1}C(O)C_mF_{2m+1}$) and semi-fluorinated ($C_nF_{2n+1}C(O)C_mH_{2m+1}$) ketones; perfluoroalkyl alcohols ($C_nF_{2n+1}OH$)

Kwiatkowski et al., ES&T Lett., 2020

"NEW" PFAS found all the time!

Fig. 1. A chloroperfluoropolyether carboxylate (CIPFPECA) identified by nontargeted MS analyses in soil samples from New Jersey. In the New Jersey samples, perfluoroethyl (e) plus perfluoropropyl (p) groups were observed to range in sum from one to four. The example congener depicted here would be designated (e,p) = 1,1. Isomers likely include an alternative terminal structure of CICF₂CF(CF₃)O– (13, 14) as well as relative positions for the perfluoroethyl and perfluoropropyl groups.

Washington et al., Science 2020.

Fig. 4. Geographic distribution. Shown are Σ CIPFPECAs in surface soils (picograms/gram). Contour lines were generated by using an algorithm in ArcMAP 10.6.1 that weighted the five nearest data points according to inverse-square distance. Despite some geographic sporadicity in the data and numerical artifacts where data are sparsely spaced, taken as a group the contours depict a clear pattern of increasing Σ CIPFPECAs with proximity to Solvay.

Stable PFAS from Precursors and Polymers

- FTOH--→ PFAS
- Fluorinated Polymers
 - Side chains can break down to release PFAS with half lives on the order of decades
 - Production may involve PFAS additives (e.g., PFOA, GenX)
 - Polymers = mixtures, containing residual monomers, oligomers, etc.
 - Emission occurs during fluoropolumer lifecycle:
 - Production, use, disposal

PFAS Exposure

PFAS Water Contamination in the United States July 20,2020 (EWG)

2,230 locations in 49 states are known to have PFAS contamination

Watersheds with point sources have higher detection frequencies for PFAS

PFAS Exposure associated with AFFF

- Cross-sectional and longitudinal study of residents in Fountain, Security, and Widefield, CO (n=220)
 - Total PFASs in untreated well water ranged from 18 – 2300 ppt (ng/L)
 - PFAS detected are typical of fire-fighting foamimpacted groundwater

Chemical in Blood Sample	Local Med. (ng/ml)	US Ref. Med. (ng/ml)	% Difference
PFHxS	14.8	1.4	+ 1,000%
PFOS	9.7	5.2	+ 80%
PFOA	3.0	2.1	+ 43%
PFNA	0.4	0.7	- 43%

John Adgate, 2019

PFOA blood levels rise with increased contamination of drinking water

-- Post et al., PLoS Biol 125(12): e2002855.

PFAS in Fast Food Packaging

A study by the Silent Spring Institute found fluorinated chemicals in one-third of the fast food packaging tested. Previous studies have shown PFASs can migrate from food packaging into the food you eat. What types of packaging pose the greatest risk? Click through this gallery to find out.

Most common PFAS in samples: PFOA, PFHxA, PFBS, and 6:2 FTS

Percent with fluorine

Fluorinated Compounds in U.S. Fast Food Packaging

Laurel A. Schaider, *,[†][©] Simona A. Balan,[‡] Arlene Blum,^{§,||} David Q. Andrews,^{\perp} Mark J. Strynar,[#][©] Margaret E. Dickinson,^{∇} David M. Lunderberg,^{∇} Johnsie R. Lang,^{\circ} and Graham F. Peaslee[@]

Long-Chained PFCAs strongly associated with seafood consumption

Faroese Children

NHANES 2005-2006

We All Have PFAS in Our Bodies

- Detected in humans globally
- >98% of people in the U.S. have measurable amounts of PFAS
- Levels of PFOA and PFOS have declined following phase-outs
- Changes in exposure to other PFAS are less pronounced

PFAS exposure trends in NHANES 2003 – 2014

Sunderland et al., J Expos Sci & Epidemiol, 2019 Dong et al., Ecotox and Environ Safety, 2019

Swedish Airport Water and Workers Blood

Y Xu, T Fletcher, et al. EHP 2020

Relative composition of PFAS (%), molar concentration basis

Serum Half-lives after Cessation of Exposure in Airport Workers

PFAS	Half-Life
PFHpA	62 d
PFOA	1.8 y
PFBS	44 d
PFPeS	230d
PFHxS	2.9 y
PFOS	2.9 у

PFAS Concentration (ng/g) in Cadavers (n=20)

PFAS	Liver	Bone	Brain	Lung	Kidney
PFBA	3.0		1.4	807	263
PFHxA	68.3	1.5	141.0	207	2.7
PFOA	4.0	20.9		12.1	1.5
PFOS	41.9		1.9	28.4	55
PFHpA	1.5	2.5		1.6	2.6
PFNA	1.0		13.5	3.5	10.9

PFDA, PFDS, PFDoA- also in brain

PFPeA, PFBS, **PFHxS**, PFDA, PFDS – also in lung

Perez et al., 2013

Tissue Burdens in Pilot Whales

PFAS contamination in NC: Regrettable replacements

Serum Levels in Wilmington, NC

GenX not detected (LOD> 2ng/ml)

6 /fluoroethers detected in serum: Nafion byproduct 2, PFO4DA,

PFO5DA in >85% participants; PFO3DA and NVOHOS – infrequently

detected; Hydro-EVE not quantifiable

~24% of total serum PFAS (median = 25.3 ng/ml)

N. Kotlarz et al., EHP 2020

PFAS Concentrations in Triangle Drinking Water

- In 2018, the sum concentration of 11 PFAS chemicals measured in Pittsboro drinking water ranged from 30 to 760 ng/L
- Pittsboro concentrations were higher than levels measured in Cary, Durham, Chapel Hill and Raleigh
- Concentrations varied considerably over time

Herkert et al. 2020

Pittsboro is home to nearly 4,000 residents. It's the only town to draw its drinking water from the Haw River.

Haw River Contamination

PFAS Levels in Pittsboro

.

Haw River Assembly

PFAS Blood Results

Thx to Heather Stapleton, Duke

PFDA PFHxA PFHpA 10-10-10-Blood Level (ng/g serum) Blood Level (ng/g serum) Blood Level (ng/g serum) General USA Wilmington, NC 0.1 0.1 0.1 Late Early Late 2019 Early 2020 Late Early 2019 2020 2019 2020

Data for the general USA is from the national biomonitoring program run by the Centers for Disease Control and Prevention

Wilmington, NC references the GenX Study (Kotlarz, et al. 2020)

PFDA & PFHxA not measured in Wilmington, NC study

PFAS-exposure related health concerns began in the 1960s

Studying PFAS exposure in human populations

Little

Hocking

124

Disease Correlations

DuPont loses another 'bellwether' C8 lawsuit

The Columbus Dispatch + Wednesday July 6, 2016 9:36 PM

RELATED ITEMS

DuPont faces fourth C8 trial > DuPont's toxic C8 chemical still unchecked, group SAVE > DuPont settles one C8 case, loses bid for retrial in another

🖬 blure 1904 💓 Tweet 36 🔛 sharethis (2038 David Freeman hugged Michael Papantonio after a federal court jury awarded him \$5.1 million on Wednesday in his lawsuit against

By Harl Rinchart

DuPont.

CRAIG HOLMAN (DISPATCH FILE PHOTO

3500+ lawsuits \$671M settlement

Testicular cancer Hypertension Ulcerative colitis

OhioP

Cancer cluster discovered

The West Virginia towns of Lubeck, Little

Washington

Works DuPont's major

producer of Teflon

Hocking and Belpre near a DuPont plant have been named as a possible cancer cluster area.

> **Kidney Cancer** Pre-eclampsia **High Cholesterol**

DETAIL BELOW

O Parkersburg

VA

68

(14

N.C.

Parkersburg

OHIO

Belpre (618)

W.VA.

OHIO

892

Lubeck

http://www.c8sciencepanel.org/

G. Peaslee, Norte Dame

1 MILE

Immune-Related Health Effects of PFAS Exposure

Grandjean et al., JAMA, 2012; Grandjean et al., EHP, 2017

Increased lower respiratory infections in children (Impinen et al., Environ Res, 2017) Decreased measles-specific antibody concentration after vaccination (Timmermann et al, EHP, 2020)

PFOA and PFOS, National Toxicology Program, 2016

Fig 1. Proportion of plasma samples with detectable PFBA concentrations at different disease severities.

Grandjean P, Timmermann CAG, Kruse M, Nielsen F, Vinholt PJ, et al. (2020) Severity of COVID-19 at elevated exposure to perfluorinated alkylates. PLOS ONE 15(12): e0244815. https://doi.org/10.1371/journal.pone.0244815 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.024

PFAS and Diabetes

Gestational Diabetes

PFAS exposures during pregnancy may influence lipid metabolism and glucose tolerance and thus may impact the health of the mother and her child. Matilla-Santander et al., EHP 2017

Sun et al., EHP 2018

PFOS (ng/mL)

Ongoing PFOS exposures associated with abnormal gestational weight gain

Serum PFNA is Associated with Poorer Executive Functioning

Vuong et al., Environ. Int. 2018

Jaacks et al., Int. J. Environ. Res. Public Health. 2016.

Healthy Start Study:

"...maternal serum concentrations of certain PFAS ...may influence infant growth and adiposity in a sex-specific manner."

415 infant-mother pairs at 5 months

AP Starling et al., Environ. Intern. 131 (2019) 104983

In utero PFAS exposure concentrations result in lower birth weight and head size in newborn boys

-- Valvi et al., Environmental international, 2017, v. 107, pp. 205-215.

PFAS Levels Associated with Altered Kidney and Thyroid Function in Adults

- Repeated measures of serum PFOS associated with increased thyroid stimulating hormone
- Repeated measures of serum PFNA, PFHxS, and PFDeA associated with decreased kidney function

• PFHxS retained high stability between serum measurements over a period greater than 10 years

PFAS Affect Breastfeeding Duration in Women

Product-Limit Survival Estimates

Breastfeeding duration difference at doubled exposure

From Romano et al. 2016, Environ Res

From Timmermann et al. 2017, Reprod Toxicol

Animal and Human Studies Show Wide Range of Health Effects

PFOA and/or PFOS

- Testicular cancer
- Kidney cancer
- Ulcerative colitis
- High cholesterol
- Pregnancy-induced hypertension
- Thyroid disruption
- Hormonal changes
- Liver malfunction
- Obesity

- Immunotoxicity, eg interference with child vaccine response
- Lower birth weight and size
- Delayed puberty, decreased fertility, early menopause
- Reduced testosterone
- Prostate cancer
- Ovarian cancer
- Bone density decrease

KEY QUESTION

PFOS/PFOA replacements – Are they safer?

Persistence
Toxicity
Uptake
Target organs
Water filtration&remediation

Radiosynthesis and Biological Distribution of ¹⁸F-Labeled Perfluorinated Alkyl Substances

Jennifer L. Burkemper,[†]● Tolulope A. Aweda,[†] Adam J. Rosenberg,^{‡,§} David M. Lunderberg,[∥] Graham F. Peaslee,[∔]● and Suzanne E. Lapi*^{+†}●

pubs.acs.org

Environ Sci Technol. 2017 Jun 6;51(11):6342-6351. doi: 10.1021/acs.est.7b00970.

Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated Carbon.

Xiao X^{1,2,3}, Ulrich BA², Chen B^{1,3}, Higgins CP².

NTP Guideline Rat Toxicity Studies

- 28-Day Toxicity Studies: Comparison of Seven PFAS
 - Data available here: <u>https://ntp.niehs.nih.gov/results/areas/pfas/index.html</u>
 - TOX Report 96: Sulfonates (2019) (PFBS, PFHxS, PFOS)
 - TOX Report 97: Carboxylates (2019) (PFHxA, PFOA, PFNA, PFDA)
 - The shorter chained PFASs (perfluorohexanoic acid (PFHxA) and perfluorobutane sulfonic acid (PFBS)) induced similar toxicities as the longer chained analogues,
 - Shorter chained chemicals required higher doses.
 - There were similar effects within the liver and thyroid hormones that occurred for short-chain and long-chain PFAS.
- PFOA Two Year Study: Comparison of PFOA perinatal and nonperinatal effects
 - Data available <u>https://ntp.niehs.nih.gov/results/path/index.html</u>
 - Technical Report draft (TR-598) peer reviewed Dec. 12, 2019 Clear evidence of carcinogenic activity in male rats; some evidence in female rats

Effects of "Short-Chain" Alternatives on the Liver

- 6:2 FTCA & 6:2 FTSA increased inflammation and cell death in mice
 Sheng et al., Arch Toxicol, 2017
- PFBS & PFHxA increased liver weights and enzymes caused liver lesions
 - Full data tables for all chemicals can be found at: https://ntp.niehs.nih.gov/results/path/index.html
- GenX induces similar constellation of adverse maternal liver alterations as PFOA at internal liver concentrations ~10x lower
 - Blake et al., Environ Health Perspect 2020

When tested, 'short chains' cause the same effects at the 'long chain" PFAS

Abnormal Female Mammary Gland Development

4.0-

3.5-

3.0-

2.5-

2.0-

1.5-

1.0-

Score

CD1 Mice

** 4.0 3.5 3.0-9-2.5-00 00 00 2.0-1.5-1.0-Control PFOA PFOA PFOA PFOA

Females PFOA

Control Gent Cent Cent Cent Cent

Females GenX

Mechanisms of PFAS toxicity

- Activation of PPARs
- Alternate receptor: AhR, CAR, PXR, FXR
- Inhibiting fatty acid transport
- Interfering with mitochondrial function

Key Research Questions

- Total organic fluorine analysis Are we measuring 90% or 10% of PFAS present in a sample?
- **Essentiality** Where are chemicals really needed and where can we replace with safer alternatives? (*Cousins et al., 2019*)
- Assessing alternatives Are our substitutes safer?
- **PFAS as a class** One chemical group or subclasses? (Kwiatkowski et al., ES&T Lett. 2020)
 - Too many PFAS to do proper toxicity testing (including mixtures)
 - The National Academy of Sciences, Engineering, and Medicine (NASEM) recently addressed hazards to Organo-Halogen Flame retardants in a report to the Consumer Product Safety Commission (CPSC – 7/24/2019).
 - NASEM strongly endorsed the use of subclasses of organohalogens in hazard assessment along with the use of alternative toxicological approaches.
 - "....an approach that uses subclasses to assess the chemicals is scientifically justifiable..." [NASEM]

Pilot data suggest large increase in unidentified PFAS in drinking water: Consistent with production trends

Extractable organic fluorine (EOF)

4700 PFASs >200 detected Toxicity of alternative PFASs not well understood

Hu et al., 2019, EHP

12

US Federal "Regulations" on PFAS

- EPA
 - Lifetime Health Advisories for Drinking Water 70 ppt PFOA+PFOS
 - NO regulation of ground water
 - NO determination of 'Hazardous Substance'
 - 172 PFAS added to TRI (in NDAA 2020 Bill)
- FDA
 - Food Contamination
- Department of Defense
 - No PFAS in AFFF in practice/training
 - No PFAS in Food Packaging
- Consumer Product Safety Commission
- FAA
 - No PFAS in AFFF in domestic airports

PFAS in Food Packaging

- NY State Ban Effective at the start of 2023.
 - No consideration of other PFAS alternatives as in Maine and WA laws
 - Governor Cuomo signed Dec. 3, 2020
- The effort to ban or restrict PFAS has gained steam after San Francisco restricted the chemicals in some foodware effective Jan. 1, 2020.
- Maine <u>banned</u> the intentional addition of PFAS in food packaging in 2019.
- Washington state will begin prohibiting PFAS in food packaging in 2022.
- Denmark is the first country to ban PFAS in food packaging as of July 2020
- FDA
 - 7 PFAS banned in 2012
 - July 31, 2020 6,2-FTOH voluntarily phased out of 15 food contact materials by 6/2025
 - 6,2 FTOH --→ 5,3 PFOA highly persistent and toxic (Kabadi et al, 2018; Rice and Kabadi, 2020)

USEPA & State PFAS Drinking Water Guidelines (ng/L; ppt) (Includes Standards & Guidance Values - Proposed, Recommended & Final)

	PFOA	PFOS	PFNA	PFHxS	PFHpA	PFDA	Total?	PFBA	PFHxA	PFBS	GenX
EPA	70	70					Yes (2)				
CA	10	40					No				
СТ	70	70	70	70	70		Yes (5)				
MA	20	20	20	20	20	20	Yes (6)			2000	
MI	8	16	6	51			No		400,000	420	370
MN	35	15		47			No	7000		2000	
NH	12	15	11	18			No				
NJ	14	13	13				No				
NY	10	10					No				
NC											140
OH	70	70									
VT	20	20	20	20	20		Yes (5)				
WA	10	15	14	70			No			1300	

States not listed generally use USEPA Health Advisories of 70 ng/L for PFOA and PFOS as guidance.

NC attorney general sues DuPont, Chemours over PFAS contamination

Sharon Johnson – WITN Oct. 13, 2020

DEQ cite Chemours for PFAS Treatment System Failures

North Carolina Health News

January 28, 2021 by <u>Greg</u> <u>Barnes</u>

The bridge over the Cape Fear River at Elizabethtown downstream from the Chemours Fayetteville Works plant. Flickr Creative Commons, Gerry Dincher

Levels in Tap Water in Brunswick County, NC

- Levels in Tap Water in Brunswick County, NC
 - EWG, Samples taken from May-December, 2019
 - Sum of 30 PFAS = 185.9 ppt
 - Wilmington = 50.5 ppt
- Chemours slapped by DEQ with notice of violation for failing to abide by 2019 consent order requiring 99% removal of residual PFAS by 9/30/2020
 - Latest in series of Chemours violations of DEQ orders starting in 2017 to stop discharging its wastewaters into Cape Fear River

Madrid Statement on Highly Fluorinated Chemicals

"We call on the international community to cooperate in limiting the production and use of PFASs and in developing safer non-fluorinated alternatives."

2015: Environmental Health Perspectives

Chemicals Strategy for Sustainability Towards a Toxic Free Environment

PFAS⁶²

The Commission will:

- ban all PFAS as a group in fire-fighting foams as well as in other uses, allowing their use only where they are essential for society;
- address PFAS with a group approach, under relevant legislation on water, sustainable products, food, industrial emissions, and waste;
- address PFAS concerns on a global scale through the relevant international fora⁶³ and in bilateral policy dialogues with third countries;
- establish an EU-wide approach and provide financial support under research and innovation programmes to identify and develop innovative methodologies for remediating PFAS contamination in the environment and in products;
- provide research and innovation funding for safe innovations to substitute PFAS under Horizon Europe.

WHY DO WE CONTINUE TO MAKE CHEMICALS THAT WILL NEVER GO AWAY? *DIDN'T WE LEARN FROM DDE, DIOXINS, PCBS, BFRS....?????*

Thank you to all

and Especially to all by trainees, collaborators, and colleagues

Questions???

