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Overview of Motivating Experiment

o Overall goal of experiment: Use the output of an imperfect
helmet-based accelerometer device to predict the true location of
head impacts.

@ A helmet with the test device is fitted around a sensor-filled
headform attached to a neckform. The researcher sets a kinetic
striking device up in prespecified locations, then hits the helmet
at prespecified speeds.

@ There are 12 impact locations (figure on next slide) and 5 speeds
per location, each replicated several times.

@ The headform provides gold standard measurements; the device’s
output is known to be flawed (see Siegmund et al., Annals of
Biomedical Engineering 2016).
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Figure 1: 12 Impact Locations
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Device Output

@ The location of a head impact is of particular interest for
studying the biomechanics of head impacts, and may be useful
for diagnosing and treating disease in the future.

@ The helmet device outputs the direction (unit vector in
3D-space) and magnitude (scalar) of the impact’s peak linear
acceleration (PLA).

o However, the magnitude and direction come from different
vectors. As such, we cannot work with the two as a single object,
meaning we must predict direction on the unit vector scale.

o Note: we can represent any unit vector in 3-space as a pair of
angles (0, ¢) using the conventions of spherical coordinates; we
will use this in our plots.
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Figure 2: Spherical Coordinates
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Figure 3: Device’s Imperfect Output (Oblique)
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Data Structure

@ Our predictor and outcome are both unit vectors in
3-dimensional space. Let U come from the gold standard
headform, and let V' come from the device.

o Let ¢ index the impact location, ¢ = 1,..., I, and j index

observations at each impact location, j = 1,...,n;.
I

@ Our data consist of N = Zni pairs of unit vectors, (U;;, Vij).
i=1
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Modeling Unit Vectors

To model unit vectors, we use the projected normal distribution.

If X ~ N3(p,X), then m ~ PNs(p, X).

The projected normal distribution has a problem with
identifiability: if X/||X|| = U, then rX/|rX| = U for any r > 0.
To combat this issue, we ”anchor” the covariance matrix 3 by
setting its bottom-rightmost element equal to 1.

Note that if U is any projected normal unit vector and r is the
nonnegative length of U, we can compose rU = X, where X is
Gaussian. We take advantage of this in model building.
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Likelihood

Let the observed pairs of unit vectors (U;;, V;;) have the pair of latent

(unobserved) lengths (5, p;;) that makes the pair bivariate Gaussian,
(rijUij, pijVij) = (Xij,Yi;). Then
p(rij, Uij,pij, Vijllocation = i, i, pryi, Bi, Xxi)
:TinNS(xiﬁ ixi + Bilijs EXi)P?jN?a(yij;uyu I3x3)

_ 2 2 Tyj pxi + Biltyi Sxi+ B8 B
=7r.. N N ’ N
ijPig/Ye ((%j) ( Hyi ) ( B I3x3

B is a diagonal 3 x 3 matrix that quantifies the linear dependence
between X and Y in location 1.
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Parameterization of Covariance

In general, we will parameterize X x; as

ZXi = a§<i1 + ¢§ilAXi¢Xi1 ¢§iAX’L'
Axioxi Ax;

where the 2 x 2 matrix Ax; is

Ax; = T%io + Do Oxiz .
bxi2 1
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Some Notation

e Note that each px;, i =1,...,1, is a 3 x 1 vector. Take the first
component of each px; and form ug) = (ug)l,ugg, ...,,ug) ).

o Similarly form ug?)7 ug?)7 ug/l)7 M$)7 and ,ugf).

o Construct qbg?, ()?), g), M, 332 and BB in the same way.
o Let U% = (Z;B)Q and U% = (zg(zl))2 Define zg(l) and zg)
Xl X2
analogously.
e Each impact location ¢ from the experiment has a fixed location
on the sphere. Let 7; denote this location.
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Priors

For s=1,2,3and t=1,2,

u ~ GP(0, K (n.1)
i ~ GP(0, Ky (1.1))
B~ GP(0, Kg(n,n'))
R~ GP(0, Ko (n.1)
¥~ GP(O. Ko (n.0)
where K is a squared exponential covariance function. Note that

similar quantities (e.g. ,u( ) and ,ug?)) have Gaussian process priors
that have identical parameters but are independent.
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Fitting

@ We can use slice sampling to sample the latent lengths  and p.

o Conditional on the latent lengths, the full conditionals for the
x, iy, B, and ¢x are available in closed form.

o The full conditionals for the zx are not available in closed form.

o As such, we employ Hamiltonian Monte Carlo sampling
embedded within a Gibbs sampler.
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Prediction

Prediction

One complication: the experiment does not touch the right
hemisphere of the helmet. There are 8 locations in the left
hemisphere and 4 directly down the center of the helmet.

1 0 0
Symmetry assumption: if M = [0 -1 0],
0 0 1

p(U\ixirights Sxiright) = PN3(Us Mpxite e, MExi 106 MT)

To obtain a predictive distribution on the sphere,
P(Uijnew|Vijnew, data). To do this, we need a prior distribution
on the impact locations.

For this analysis, we reflected the 6 left-hemisphere locations to
the right hemisphere, then placed a uniform discrete prior on the
16 resulting locations.
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Density Plot for Oblique

Polar Angle (Radians)
15 20 25 30
I I

10

05

0.0

Azimuth (Radians)

Figure 7: Regression Density Estimation (Oblique)
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Results

Density Plot for Jawpad
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Figure 8: Regression Density Estimation (Jawpad)
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Density Plot for Rear Low

o | a
©
%
L
v | = o
o '
@ : .
c
ot e
T we g
13
D 0
D o«
=
<
© .
s 2 4
e -
] i .
o ] . L
o | ‘k.
o

Azimuth (Radians)

Figure 9: Regression Density Estimation (Rear Low)
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Figure 14: Regression Surface: zg(l)
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Next Steps

Next Steps

o Updates to the experiment

o Both hemispheres
e Many “small” vs. few “large” locations
o Target locations to regions of high uncertainty

o Updates to the model
e Add covariates
o Adapt to real-world data

e Calibrate using observed impact location distribution
o Employ in real-time

an Head Impact Model
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