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Overview of Motivating Experiment

Overall goal of experiment: Use the output of an imperfect
helmet-based accelerometer device to predict the true location of
head impacts.

A helmet with the test device is fitted around a sensor-filled
headform attached to a neckform. The researcher sets a kinetic
striking device up in prespecified locations, then hits the helmet
at prespecified speeds.

There are 12 impact locations (figure on next slide) and 5 speeds
per location, each replicated several times.

The headform provides gold standard measurements; the device’s
output is known to be flawed (see Siegmund et al., Annals of
Biomedical Engineering 2016).
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Figure 1: 12 Impact Locations
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Device Output

The location of a head impact is of particular interest for
studying the biomechanics of head impacts, and may be useful
for diagnosing and treating disease in the future.

The helmet device outputs the direction (unit vector in
3D-space) and magnitude (scalar) of the impact’s peak linear
acceleration (PLA).

However, the magnitude and direction come from different
vectors. As such, we cannot work with the two as a single object,
meaning we must predict direction on the unit vector scale.

Note: we can represent any unit vector in 3-space as a pair of
angles (θ, φ) using the conventions of spherical coordinates; we
will use this in our plots.
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Figure 2: Spherical Coordinates
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Figure 3: Device’s Imperfect Output (Oblique)
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Figure 4: Device’s Imperfect Output (Jawpad)
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Figure 5: Device’s Imperfect Output (Rear Low)
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Data Structure

Our predictor and outcome are both unit vectors in
3-dimensional space. Let U come from the gold standard
headform, and let V come from the device.

Let i index the impact location, i = 1, ..., I, and j index
observations at each impact location, j = 1, ..., ni.

Our data consist of N =

I∑
i=1

ni pairs of unit vectors, (Uij , Vij).
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Modeling Unit Vectors

To model unit vectors, we use the projected normal distribution.

If X ∼ N3(µ,Σ), then
X

‖X‖
∼ PN 3(µ,Σ).

The projected normal distribution has a problem with
identifiability: if X/‖X‖ = U , then rX/‖rX‖ = U for any r > 0.
To combat this issue, we ”anchor” the covariance matrix Σ by
setting its bottom-rightmost element equal to 1.

Note that if U is any projected normal unit vector and r is the
nonnegative length of U , we can compose rU = X, where X is
Gaussian. We take advantage of this in model building.
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Figure 6: Visualizing PN 3
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Likelihood

Let the observed pairs of unit vectors (Uij , Vij) have the pair of latent
(unobserved) lengths (rij , ρij) that makes the pair bivariate Gaussian,
(rijUij , ρijVij) = (Xij , Yij). Then

p(rij , Uij ,ρij , Vij |location = i, µXi, µY i, βi,ΣXi)

=r2ijN3(xij ;µXi + βiyij ,ΣXi)ρ
2
ijN3(yij ;µY i, I3×3)

=r2ijρ
2
ijN6

((
xij
yij

)
;

(
µXi + βiµY i

µY i

)
,

(
ΣXi + βiβ

T
i βi

βTi I3×3

))
βi is a diagonal 3× 3 matrix that quantifies the linear dependence
between X and Y in location i.
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Parameterization of Covariance

In general, we will parameterize ΣXi as

ΣXi =

(
σ2
Xi1 + φTXi1ΛXiφXi1 φTXiΛXi

ΛXiφXi1 ΛXi

)
where the 2× 2 matrix ΛXi is

ΛXi =

(
σ2
Xi2 + φ2Xi2 φXi2
φXi2 1

)
.
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Some Notation

Note that each µXi, i = 1, ..., I, is a 3× 1 vector. Take the first

component of each µXi and form µ
(1)
X = (µ

(1)
X1, µ

(1)
X2, ..., µ

(1)
XI).

Similarly form µ
(2)
X , µ

(3)
X , µ

(1)
Y , µ

(2)
Y , and µ

(3)
Y .

Construct φ
(1)
X , φ

(2)
X , φ

(3)
X , β(1), β(2), and β(3) in the same way.

Let 1
σ2
Xi1

= (z
(1)
Xi )

2 and 1
σ2
Xi2

= (z
(2)
Xi )

2. Define z
(1)
X and z

(2)
X

analogously.

Each impact location i from the experiment has a fixed location
on the sphere. Let ηi denote this location.
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Priors

For s = 1, 2, 3 and t = 1, 2,

µ
(s)
X ∼ GP (0,KµX

(η, η′))

µ
(s)
Y ∼ GP (0,KµY

(η, η′))

β(s) ∼ GP (0,Kβ(η, η′))

φ
(s)
X ∼ GP (0,KφX

(η, η′))

z
(t)
X ∼ GP (0,KzX (η, η′))

where K is a squared exponential covariance function. Note that

similar quantities (e.g. µ
(1)
X and µ

(2)
X ) have Gaussian process priors

that have identical parameters but are independent.
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Fitting

We can use slice sampling to sample the latent lengths r and ρ.

Conditional on the latent lengths, the full conditionals for the
µX , µY , β, and φX are available in closed form.

The full conditionals for the zX are not available in closed form.

As such, we employ Hamiltonian Monte Carlo sampling
embedded within a Gibbs sampler.
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Prediction

One complication: the experiment does not touch the right
hemisphere of the helmet. There are 8 locations in the left
hemisphere and 4 directly down the center of the helmet.

Symmetry assumption: if M =

1 0 0
0 −1 0
0 0 1

,

p(U |µXi,right,ΣXi,right) = PN 3(U ;MµXi,left,MΣXi,leftM
T )

To obtain a predictive distribution on the sphere,
p(Uij,new|Vij,new, data). To do this, we need a prior distribution
on the impact locations.

For this analysis, we reflected the 6 left-hemisphere locations to
the right hemisphere, then placed a uniform discrete prior on the
16 resulting locations.
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Figure 7: Regression Density Estimation (Oblique)
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Figure 8: Regression Density Estimation (Jawpad)
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Figure 9: Regression Density Estimation (Rear Low)
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Figure 10: Regression Surface: µX1
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Figure 11: Regression Surface: µY 1
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Figure 12: Regression Surface: β1
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Figure 13: Regression Surface: β3
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Figure 14: Regression Surface: z
(1)
X
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Updates to the experiment

Both hemispheres
Many “small” vs. few “large” locations
Target locations to regions of high uncertainty

Updates to the model

Add covariates

Adapt to real-world data

Calibrate using observed impact location distribution
Employ in real-time
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