Back to the Future:

Valid Analysis of Big Data

Jianqing Fan

Princeton University

Jianqing Fan (Princeton University)

Are we all wrong?

Are Fundamental Assumptions in High-dimensional Statistics Verifiable?

- What are Big Data?
- What are key assumptions in high-dim inference?
- How to verify them?
- What are the consequence when violated?
- How to pose realistic and verifiable assumptions?

イロト イポト イヨト イヨト

э

Most high-dim methods are based on $E(\varepsilon X) = 0$ (exogeneity).

They are unrealistic, and often wrong.

All high-dim math is beautiful and correct!

イロト イポト イヨト イヨト

Large and Complex Data: \bigstar Structured (*n* and *p* are both large) \bigstar Unstructured (text, web, videos)

Biological Sci.: Genomics, Medicine, Genetics, Neurosci

Engineering: Machine learning, computer vision, networks.

★ Social Sci.: Economics, business, and digital humanities.

<u>Natural Sci.</u>: Meteorology, earth science, astronomy.

Characterize contemporary scientific and decision problems.

Large and Complex Data: \bigstar Structured (*n* and *p* are both large) \bigstar Unstructured (text, web, videos)

Biological Sci.: Genomics, Medicine, Genetics, Neurosci

Engineering: Machine learning, computer vision, networks.

★ <u>Social Sci.</u>: Economics, business, and digital humanities.

★ <u>Natural Sci.</u>: Meteorology, earth science, astronomy.

Characterize contemporary scientific and decision problems.

Examples: Biological Sciences

Bioinformatic: disease classification / predicting clinical outcomes /

biological process using microarray or proteomics data.

• Assoc. between phenotypes and SNPs & gene exp (QTL & eQTL).

• Detecting activated voxels after stimulii in neuroscience.

Hold great promises for understanding

Heterogeneity: personalized medicine or services

Commonality: in presence of large variations (noises)

from large pools of variables, factors, genes, environments and their interactions as well as **latent factors**.

■ Risk property: To construct as effective a method as possible to predict future observations. ★Correlation

Feature selection and risk property: To gain insight into the relationship between features and response for scientific purposes, as well as, hopefully, to construct an improved prediction method.

イロト イポト イヨト イヨト

★ Fan and Li (2006), Bickel (2008, JRSS-B)

■ Risk property: To construct as effective a method as possible to predict future observations. ★Correlation

Feature selection and risk property: To gain insight into the relationship between features and response for scientific purposes, as well as, hopefully, to construct an improved prediction method.

イロト イポト イヨト イヨト

★Fan and Li (2006), Bickel (2008, JRSS-B)

Impact of Big Data

- **Data Acquisition**: Multiple platforms, bias sampling, experimental variations, measurement errors.
- Data Management: Storage, memory, preprocessing, queries.
- **Computing infrastructure**: distributed file systems and cloud computing
- <u>Computation</u>: new paradigms on optimization and computing: high-performance and parallel computing.
- **Data analysis**: Noise accumulation, spurious correlations, incidental endogeneity, measurement errors, and

heterogeneity.

Jianqing Fan (Princeton University)

Impact of Big Data

- **Data Acquisition**: Multiple platforms, bias sampling, experimental variations, measurement errors.
- **Data Management**: Storage, memory, preprocessing, queries.
- <u>Computing infrastructure</u>: distributed file systems and cloud computing
- <u>Computation</u>: new paradigms on optimization and computing: high-performance and parallel computing.
- Data analysis: Noise accumulation, spurious correlations, incidental endogeneity, measurement errors, and

heterogeneity.

Jianqing Fan (Princeton University)

Are we all wrong?

イロト イポト イヨト イヨト

Impact of Big Data

- **Data Acquisition**: Multiple platforms, bias sampling, experimental variations, measurement errors.
- **Data Management**: Storage, memory, preprocessing, queries.
- <u>Computing infrastructure</u>: distributed file systems and cloud computing
- <u>Computation</u>: new paradigms on optimization and computing: high-performance and parallel computing.
- Data analysis: Noise accumulation, spurious correlations, incidental endogeneity, measurement errors, and

heterogeneity.

Jianqing Fan (Princeton University)

イロト イポト イヨト イヨト

Are our assumptions verifiable?

Jianqing Fan (Princeton University) Are we all wrong?

イロト イポト イヨト イヨト

Collect data: e.g. Unemployment rates

イロト イ理ト イヨト イヨト

Bioinformatic: disease classs. / clinical outcomes w/ "-omics"

data.

Regularization: Use PLS (Lasso & Scad) to get S_0 and β_0 .

Done!

Stylized Model: $Y = \mathbf{X}^T \beta_0 + \epsilon$, β_0 sparse

$E \varepsilon \mathbf{X} = 0$ or $E(\varepsilon | \mathbf{X}) = 0$

イロト イポト イヨト イヨト

3

There are tens of thousand of equations!

Related to identifiability!

Are X_i and $\hat{\varepsilon}$ uncorrelated?

What consequence if not?

How to do it right?

<ロト < 回 > < 回 > < 回 > .

1

Jianging Fan (Princeton University) Are we all wrong?

Are X_i and $\hat{\varepsilon}$ uncorrelated?

What consequence if not?

How to do it right?

イロト 不得下 イヨト イヨト

1

500

Jianging Fan (Princeton University) Are we all wrong?

Are X_i and $\hat{\varepsilon}$ uncorrelated?

What consequence if not?

How to do it right?

イロト 不得下 イヨト イヨト

1

500

Jianging Fan (Princeton University) Are we all wrong?

Example: Distribution of correlations

Data: 90 western Europeans from 'HapMap' project **Response**: expressions of *CHRNA6*, cholinergic receptor, nicotinic, alpha 6 (554 SNPs within 1MB). **Covariates**: All other expressions (p = 47292)

Lasso: Select 23 variables.

Moral: High-dimensionality is a source of incidental endogeneity

Incidental Endogeneity

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

<u>True model</u>: $Y = 2X_1 + X_2 + \varepsilon$,

 $\operatorname{corr}(X_1,\varepsilon) = 0, \operatorname{corr}(X_2,\varepsilon) = 0$

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Netting: Collecting many variables
$$\{X_j\}_{j=1}^p$$
.
Incidentally,

$$\operatorname{corr}(X_j, \underbrace{Y - 2X_1 - X_2}_{\varepsilon}) \neq 0.$$
 Endogeneity

Many X_i 's related to Y, hence to ε incidentally due to large p.

High dim causes incidental endogeneity

<u>Outcome</u>: Y = clinical, biological, or health, credit<u>Exogenous model</u>: $Y = \underbrace{\mathbf{X}_{S_0}^T \beta_0 + \varepsilon}_{E(\varepsilon | \mathbf{X}_{S_0}) = 0}$, unknown S_0 . collect many

e.g. gene expressions

e.g. microecon/risk factors, related to Y

Hard to make:
$$E(\underbrace{Y - \mathbf{X}_{S_0}^T \beta_0}_{\epsilon}) X_j = 0$$
 for all j

H₁: high-dim causes endogeneity

Any tools to test?

What are verifiable assumptions?

イロト イポト イヨト イヨト

Jianqing Fan (Princeton University) Are we all wrong?

H₁: high-dim causes endogeneity

Any tools to test?

What are verifiable assumptions?

イロト イポト イヨト イヨト

Jianqing Fan (Princeton University) Are we all wrong?

H₁: high-dim causes endogeneity

Any tools to test?

What are verifiable assumptions?

Test against Exogeneity

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

Raw Materials and Visualization

<u>Raw materials</u>: Residuals $\hat{\epsilon}$ after regularized fit:

 $\{\mathbf{r_j} = \operatorname{corr}(\hat{\mathbf{\epsilon}}, \mathbf{X_j})\}_{j=1}^{p}$ Visualized by histogram

Jianqing Fan (Princeton University)

Sac

What is **null dist.** of the histogram?

$$N(0, 1/\sqrt{n})?$$

イロト 不得下 イヨト イヨト

э

★KS test:
$$T_1 = \|\hat{F}_n(x) - F_0(x)\|_{\infty}$$
,
★CVM test $T_2 = \|\hat{F}_n(x) - F_0(x)\|_2^2$.

What are the null distributions when *p* is large?

<u>What is new</u>: $\{\mathbf{X}_j\}_{i=1}^p$ are correlated!

Jianqing Fan (Princeton University) Are we all wrong?

What is the empirical dist of angles between *p* random points on the *n*-dim unit sphere and the north pole?

What are the dist. of the min angle or ave angle?

See Cai, Fan, and Jiang (13) for both large *n* and small *n* when $p \rightarrow \infty$, but for **independent** random points.

• • • • • • • • • • • •

Other test statistics

$$T_3 = \rho^{-1} \sum_{j=1}^{\rho} r_j^q, \qquad T_4 = \max_{1 \le j \le \rho} |r_j|$$

- They are empirical q-th moment and ∞-moment of $\hat{F}_n(x)$, corresponding to the ave (q = 1) and min angles.
- ★ More powerful for a small fraction of departures, but can not give an estimate of the proportion of violations.

イロト イポト イヨト イヨト

э

Their distributions under depend. covariates.

Consequence of Endogeneity

<ロト < 回 > < 回 > < 回 > < 回 > .

Necessary condition for any PLS consistent is **exogeneity**: $EX_j \varepsilon = 0, \forall j$ (*Fan and Yuan, 14*).

Scientific Implications: Can choose wrong sets of genes or SNPs using LASSO/SCAD in presence of endogeneity.

Related to model identifiability, e.g.

$$Y = 2X_1 + X_2 + \varepsilon,$$
 $EX_1\varepsilon = EX_2\varepsilon = 0$

$$= a_3X_3 + a_4X_4 + a_5X_5 + \varepsilon^*, \qquad EX_j\varepsilon^* = 0, j = 3, 4, 5.$$

イロト イ理ト イヨト イヨト

Necessary condition for any PLS consistent is **exogeneity**: $EX_j \varepsilon = 0, \forall j$ (*Fan and Yuan, 14*).

Scientific Implications: Can choose wrong sets of genes or SNPs using LASSO/SCAD in presence of endogeneity.

Related to model identifiability, e.g.

$$\begin{array}{rcl} Y &=& 2X_1 + X_2 + \varepsilon, & & EX_1\varepsilon = EX_2\varepsilon = 0 \\ &=& a_3X_3 + a_4X_4 + a_5X_5 + \varepsilon^*, & & EX_j\varepsilon^* = 0, j = 3, 4, 5. \end{array}$$

True model:
$$eta_{\mathcal{S}}^0 = (5, -4, 7, -1, 1.5), \ \mathbf{Z} \sim \textit{N}(0, \mathbf{\Sigma}), \sigma_{ij} = 0.5^{|i-j|}$$

 $X_j = Z_j$ for $j \le 100$ (exogenous), $X_j = (Z_j + 5)(\epsilon + 1)$, (endogenous).

n = 200, p = 300, 100 replicates.

PLS			FGMM			
	$\lambda = 0.1$	$\lambda{=}0.5$	$\lambda = 0.1$	post-FGMM	$\lambda = 0.2$	post-FGMM
MSE _S	0.278	0.712	0.215	0.190	0.241	0.188
MSE _N	0.541	0.118	0.018		0.006	
TP-Mean	5	4.733	5		4.97	
FP-Mean	206.26	31.14	3.56		3.58	
Verifiable Assumptions

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

Model selection consistency under

$$Y = \mathbf{X}_{S_0}^T \beta_0 + \epsilon, \qquad \mathbf{E}(\epsilon | \mathbf{X}_{S_0}) = \mathbf{0}$$

or weaker, e.g. $EX_{S_0}\varepsilon = 0$, $EX_{S_0}^2\varepsilon = 0$.

Easier to validate: only $2|S_0|$ correlations to be validated.

Use over-identification to screen endogeneious variables: FGMM (*Fan&Liao, 14*)

Model selection consistency under

$$Y = \mathbf{X}_{\mathcal{S}_0}^{\mathcal{T}} \beta_0 + \epsilon, \qquad \mathbf{E}(\epsilon | \mathbf{X}_{\mathbf{S}_0}) = \mathbf{0}$$

or weaker, e.g. $EX_{S_0}\varepsilon = 0$, $EX_{S_0}^2\varepsilon = 0$.

Easier to validate: only $2|S_0|$ correlations to be validated.

Use over-identification to screen endogeneious variables:
 FGMM (*Fan&Liao*, 14)

focused on endogeneity screening by

$$L_{\text{FGMM}}(\beta) = \left\| \frac{1}{n} \sum_{i=1}^{n} \overbrace{(Y_i - \mathbf{X}_{S,i}^T \beta_S)}^{\mathbf{\epsilon}_i} \begin{pmatrix} \mathbf{X}_{S,i} \\ f(\mathbf{X}_{S,i}) \end{pmatrix} \right\|_{w}.$$

Example:
$$f(x) = x^2$$
 or $f(x) = |x - \overline{x}|$

<u>Over-identification Condition</u>: Any $S \supset$ endogenous var.

$$\min_{\boldsymbol{\beta}_{\mathcal{S}}} \left\| \underbrace{\boldsymbol{\mathcal{E}}(\boldsymbol{Y} - \boldsymbol{X}_{\mathcal{S}}^{T}\boldsymbol{\beta}_{\mathcal{S}})\boldsymbol{X}_{\mathcal{S}}}_{|\mathcal{S}| \text{ equations}} \right\|^{2} + \left\| \underbrace{\boldsymbol{\mathcal{E}}(\boldsymbol{Y} - \boldsymbol{X}_{\mathcal{S}}^{T}\boldsymbol{\beta}_{\mathcal{S}})f(\boldsymbol{X}_{\mathcal{S}}^{2})}_{|\mathcal{S}| \text{ equations}} \right\|^{2} \ge c.$$

イロト 不得下 イヨト イヨト

э

Example: Hap Map Data

<u>FGMM fit</u> using $EX_{S_0} \varepsilon = 0$, $EX_{S_0}^2 \varepsilon = 0$. 5 genes selected.

イロト イポト イヨト イヨト

э

Sar

	No Fitting	Lasso	FGMM
# of parameters	1	23+1	5+1
AIC	-2.289	-2.883	-2.807
BIC	-2.261	-2.216	-2.640
RIC	-2.070	2.324	-1.503

RIC (penalty = $2\log p$) (*Foster and George, 94*) favors even more to the FGMM fit.

イロト イポト イヨト イヨト

Another Example: Prostate center study

Data: 148 microarrays from GEO database and ArrayExpress. **Response**: expressions of gene *DDR1* (encodes receptor tyrosine kinases, related to the prostate cancer)

Covariates: remaining 12,718 genes

(a) Distribution of $\widehat{\text{Corr}}(Y, X_i)$

Jianqing Fan (Princeton University)

Are we all wrong?

Fitting: FGMM based on $EX_{S_0}\varepsilon = 0$, $EX_{S_0}^2\varepsilon = 0$.

 $\{\operatorname{corr}(X_{S_0},\hat{\varepsilon}),\operatorname{corr}(X_{S_0}^2,\hat{\varepsilon})\}$

イロト イロト イヨト

- \star High dimensionality is a source of endogeneity.
- ★ Endogeneity results in model selection inconsistency and parameter un-identifiability.
- \star Exog. cond in high-dim is unrealistic and needs validation.
- Exogeneity assumption should NOT be made on "unimportant variables".
- ★ FGMM can deliver model selection consistency under more realistic and verifiable assumptions.

- \star High dimensionality is a source of endogeneity.
- ★ Endogeneity results in model selection inconsistency and parameter un-identifiability.
- ★ Exog. cond in high-dim is unrealistic and needs validation.
- Exogeneity assumption should NOT be made on "unimportant variables".
- ★ FGMM can deliver model selection consistency under more realistic and verifiable assumptions.

- \star High dimensionality is a source of endogeneity.
- ★ Endogeneity results in model selection inconsistency and parameter un-identifiability.
- \star Exog. cond in high-dim is unrealistic and needs validation.
- Exogeneity assumption should NOT be made on "unimportant variables".
- ★ FGMM can deliver model selection consistency under more realistic and verifiable assumptions.

イロト イ理ト イヨト イヨト

- \star High dimensionality is a source of endogeneity.
- ★ Endogeneity results in model selection inconsistency and parameter un-identifiability.
- \star Exog. cond in high-dim is unrealistic and needs validation.
- Exogeneity assumption should NOT be made on "unimportant variables".
- ★ FGMM can deliver model selection consistency under more realistic and verifiable assumptions.

イロト イ理ト イヨト イヨト

э

The End

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

2

DQC

FDR Control under Dependency

Jianqing Fan

Princeton University

With Xu Han

May 28, 2014

Background

- Principal Factor Approximation
- FDP with Unknown Covariance
- Numerical properties

Background

Jianqing Fan (Princeton University) False Discovery Rate Under Dependence

イロト イポト イヨト イヨト

э

DQC

★ Biology, Medicine, Genetics, Neuroscience:

- analysis of high throughput data: genes, proteins, copy No.
- genome-wide association studies— SNPs w/ phenotype (e.g. weight, diseases, QTL) or gene expression (eQTL).
- detecting activated voxels after stimulii.

★ Finance, Economics: Find fund managers who have winning ability (Barras, Scaillet & Wermers, 10).

★ Network and graphical models: Detecting zero-corr patterns.

イロト 不得 トイヨト イヨト

<u>Problem</u>: Given test statistics $Z_i \sim N(\mu_i, 1)$, wish to test

$$H_{0i}: \mu_i = 0$$
 vs $H_{1i}: \mu_i \neq 0$, $i = 1, \cdots, p$.

 \star large *p* and sparse μ .

Dependence: Z ~ $N_{\rho}(\mu, \Sigma)$, unknown Σ Aim 1: ★Consistent estimation of False Discovery Proportion (FDP) Aim 2: ★Improve the power.

イロト イポト イヨト イヨト

<u>Problem</u>: Given test statistics $Z_i \sim N(\mu_i, 1)$, wish to test

$$H_{0i}: \mu_i = 0$$
 vs $H_{1i}: \mu_i \neq 0$, $i = 1, \cdots, p$.

 \star large p and sparse μ .

Dependence: Z ~ $N_p(\mu, \Sigma)$, unknown Σ Aim 1: ★Consistent estimation of False Discovery Proportion (FDP) Aim 2: ★Improve the power.

イロト 不得 トイヨト イヨト

<u>Discoveries</u>: $\{j : |Z_j| > t\}$ for a critical value *t*. **Total** = R(t).

False Discoveries: V(t) = # of true nulls with $|Z_i| > t$.

Proportion: FDP(t) = V(t)/R(t), V(t) unobservable r.v.

Indep tests: FDP(t) $\approx p_0 G(t)/R(t)$, a.s. $\bigstar G(t) = P(|Z_i| > t)$.

Dep tests: FDP(t) varies from data to data. (*Owen, 05, Efron, 07, 10, Fan et al, 12*)

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

<u>Discoveries</u>: $\{j : |Z_j| > t\}$ for a critical value *t*. **Total** = R(t).

False Discoveries: V(t) = # of true nulls with $|Z_i| > t$.

Proportion: FDP(t) = V(t)/R(t), V(t) unobservable r.v.

Indep tests: FDP(t) $\approx p_0 G(t)/R(t)$, a.s. $\bigstar G(t) = P(|Z_i| > t)$.

Dep tests: FDP(t) varies from data to data. (*Owen, 05, Efron, 07, 10, Fan et al, 12*)

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Equi-corr:
$$Z_i = \mu_i + \sqrt{\rho} W + \sqrt{1 - \rho} \varepsilon_i$$
, $W, \varepsilon_i \sim_{indep} N(0, 1)$

<u>Number of FD</u>: $V(t) = \sum_{i=1}^{p_0} I(Z_i > t)$ (one-sided tests)

Indep: $V(t) \approx p_0 \Phi(-t) = 22.8$, if $p_0 = 1000, t = 2$

ependence:
$$\rho = 0.64$$
:
 $V(t) = \sum_{i \in \text{null}} I(0.8W + 0.6\varepsilon_i > t) \approx p_0 \Phi\left(-\frac{t - 0.8W}{0.6}\right)$

イロト イポト イヨト イヨト

Equi-corr:
$$Z_i = \mu_i + \sqrt{\rho} W + \sqrt{1 - \rho} \varepsilon_i$$
, $W, \varepsilon_i \sim_{indep} N(0, 1)$

<u>Number of FD</u>: $V(t) = \sum_{i=1}^{p_0} I(Z_i > t)$ (one-sided tests)

Indep: $V(t) \approx p_0 \Phi(-t) = 22.8$, if $p_0 = 1000, t = 2$

Dependence:
$$\rho = 0.64$$
:
 $V(t) = \sum_{i \in \text{null}} I(0.8W + 0.6\varepsilon_i > t) \approx p_0 \Phi\left(-\frac{t - 0.8W}{0.6}\right)$

Jianqing Fan (Princeton University) False Discovery Rate Under Dependence

イロト 不得 トイヨト イヨト

Number of False Discoveries:

$$W = 0 \Longrightarrow V(t) \approx 0.43$$

$$W = 2 \Longrightarrow V(t) \approx 252.5$$

 $W = 1 \Longrightarrow V(t) \approx 22.8.$ $W = 3 \Longrightarrow V(t) \approx 747.5.$

イロト イポト イヨト イヨト

- \star Depends **sensitively** on realization of W;
- **★** Consistently estimable: $W = \overline{Z}/.8 + O_p(1/\sqrt{p})$ and

$$p_0\Phi\left(-rac{t-0.8\,\hat{W}}{0.6}
ight)/R(t),\qquad \hat{W}=ar{Z}/.8$$
 (figure

Number of False Discoveries:

$$W = 0 \Longrightarrow V(t) \approx 0.43$$

$$W = 2 \Longrightarrow V(t) \approx 252.5$$

$$W = 1 \Longrightarrow V(t) \approx 22.8.$$

 $W = 3 \Longrightarrow V(t) \approx 747.5.$

イロト イポト イヨト イヨト

э

- ★ Depends sensitively on realization of W;
- ★ Consistently estimable: $W = \overline{Z}/.8 + O_p(1/\sqrt{p})$ and

$$p_0\Phi\left(-rac{t-0.8\hat{W}}{0.6}
ight)/R(t),\qquad \hat{W}=ar{Z}/.8$$
 (for

★ Weak Dependence: Benjamini & Hochberg (95), Storey (02), Storey, Taylor & Siegmund (04); Genovese & Wasserman (02, 06), vande Laan, 04; Lehmann and Romano, 05; Romano and Wolf (07),

★ Applicable to Dependence: Benjamini & Yekutieli (01), Clarke and Hall (2009), Sun & Cai (2009), Liu and Shao (12)...

Use of Dependence: Efron (07, 10), Leek & Storey (08), Friguet,

Kloareg & Causeur (09), Schwartzman (10), Fan, Han, and Gu, 12,...

Not necessarily a consistent estimate of FDP.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ ○

Principal Factor Approximation

Known Dependence

Fan, Han and Gu (2012, JASA)

Jianqing Fan (Princeton University) False Discovery Rate Under Dependence

Estimating Principal Factor

Test Statistics: $\mathbf{Z} \sim \mathcal{N}(\mu, \Sigma)$, **SVD:** $\Sigma = \sum_{i=1}^{p} \lambda_i \gamma_i \gamma_i^T = \mathbf{B}\mathbf{B}^{\mathsf{T}} + \mathbf{A}.$ $\star \mathbf{B} = (\sqrt{\lambda_1} \gamma_1, \cdots, \sqrt{\lambda_k} \gamma_k),$ $\mathbf{A} = residual matrix.$

 $diag(\Sigma) = 1.$ Σ known.

イロト イポト イヨト イヨト

-

Decomposition: $\mathbf{Z} = \mu + \mathbf{B}\mathbf{W} + \mathbf{K}$ $\mathbf{W} \sim N(0, I_k)$ and $\mathbf{K} \sim N(0, \mathbf{A})$.

Realized Principal Factors: min_{$\mu,w} ||$ **Z** $- <math>\mu$ - **BW** ||² + λ || μ ||₁</sub>

Estimating Principal Factor

$$\begin{array}{ll} \underline{\textbf{Test Statistics:}} & \textbf{Z} \sim \mathcal{N}(\mu, \Sigma), & \text{diag}(\Sigma) = 1. \\ \underline{\textbf{SVD:}} & \Sigma = \sum_{i=1}^{p} \lambda_i \gamma_i \gamma_i^T = \textbf{B} \textbf{B}^{\mathsf{T}} + \textbf{A}. & \Sigma \text{ known.} \\ \hline \bigstar \textbf{B} = (\sqrt{\lambda_1} \gamma_1, \cdots, \sqrt{\lambda_k} \gamma_k), & \textbf{A} = \text{residual matrix.} \end{array}$$

Decomposition:
$$\mathbf{Z} = \mu + \mathbf{BW} + \mathbf{K}$$
 $\mathbf{W} \sim N(0, I_k)$ and $\mathbf{K} \sim N(0, \mathbf{A})$.

Realized Principal Factors: $\min_{\mu, w} \|\mathbf{Z} - \mu - \mathbf{BW}\|^2 + \lambda \|\mu\|_1$ (same as Huber- ψ) or simply L_1 -fit: $\min_w \|\mathbf{Z} - \mathbf{BW}\|_1$.

イロト イポト イヨト イヨト

Estimation of FDP

Input: test statistics $Z \sim N(\mu, \Sigma)$

1 SVD:
$$\Sigma = \sum_{i=1}^{p} \lambda_i \gamma_i \gamma_i^T = \mathbf{B}\mathbf{B}^\mathsf{T} + \mathbf{A}$$

2 Estimating factors: $\min_{w} \|\mathbf{Z} - \mathbf{BW}\|_{1}$

Solution Estimation of FDP:
$$\widehat{\text{FDP}}(t) = \frac{\sum_{j=1}^{P} P(\hat{\eta}_{i}, t)}{R(t)}$$
.

3

$$\star P(\eta_i, t) = P_{null}\{|Z_i| > t | \mathbf{W}\}$$

• =
$$\Phi(a_i(z_{t/2} + \eta_i)) + \Phi(a_i(z_{t/2} - \eta_i)),$$

• $\eta_i = \mathbf{b}_i^T \mathbf{W}, \quad \mathbf{b}_i = i^{th} \text{ row of } \mathbf{B} \qquad a_i = (1 - \|\mathbf{b}_i\|^2)^{-1/2}$

Estimation of FDP

Input: test statistics $\mathbf{Z} \sim N(\mu, \boldsymbol{\Sigma})$

イロト イポト イヨト イヨト

3

Sac

1 SVD:
$$\Sigma = \sum_{i=1}^{p} \lambda_i \gamma_i \gamma_i^T = \mathbf{B}\mathbf{B}^\mathsf{T} + \mathbf{A}$$

2 Estimating factors: $\min_{w} \|\mathbf{Z} - \mathbf{BW}\|_{1}$

$$\begin{aligned} & \underbrace{\text{Estimation of FDP}}_{\text{Estimation of FDP}}: \widehat{\text{FDP}}(t) = \frac{\sum_{i=1}^{p} P(\hat{\eta}_{i}, t)}{R(t)}. \end{aligned}$$

$$& \bigstar P(\eta_{i}, t) = P_{null}\{|Z_{i}| > t|\mathbf{W}\} \\ & \bullet \qquad = \Phi(a_{i}(z_{t/2} + \eta_{i})) + \Phi(a_{i}(z_{t/2} - \eta_{i})), \\ & \bullet \qquad \eta_{i} = \mathbf{b}_{i}^{\mathsf{T}}\mathbf{W}, \quad \mathbf{b}_{i} = i^{th} \text{ row of } \mathbf{B} \qquad a_{i} = (1 - \|\mathbf{b}_{i}\|^{2})^{-1/2}. \end{aligned}$$

Related to Efron (2010)

- <u>Gram-Charlier</u>: $V(t) = \phi(t) \sum_{j=1}^{\infty} (-1)^j \frac{A_j}{j!} \phi^{(j-1)}(t)$ $A_j \sim ID(0, \alpha_j)$ with $\alpha_j = \sum_{i \neq i'} \operatorname{cor}(Z_i, Z'_i)^j$ (Schwartzman, 10)
- Efron takes j = 2 in computing E(V(t)|A).
- Basis function (Hermit polynomial) expansion vs singular value decomposition.
- Different methods in estimating A's and W's

イロト 不得 トイヨト イヨト 二日

Consistency and Rate of Convergence

False discoveries: $V(t) = \sum_{i \in \text{true null}} P(\eta_i, t) + o(p)$

Theorem: FDP(t) – FDP_A(t) =
$$o_p(1)$$
, FDP_A(t) = $\frac{\sum_{j=1}^{p} P(\eta_j, t)}{R(t)}$,
if $p^{-1}(\lambda_{k+1}^2 + \dots + \lambda_p^2)^{1/2} \longrightarrow 0$.

If $\lambda_{\max} = o(p^{1/2})$, we can take $k = 0 \implies$ independence Convergence rate: $o_p(p^{-\delta/2}) \qquad \text{if } p^{-1}(\lambda_{k+1}^2 + \dots + \lambda_p^2)^{1/2} = p^{-\delta}$.

Accuracy: $|\widehat{\mathsf{FDP}}(t) - \mathrm{FDP}_{\mathrm{A}}(t)| = O_{p}(||\widehat{\mathbf{W}} - \mathbf{W}||).$

False discoveries: $V(t) = \sum_{i \in \text{true null}} P(\eta_i, t) + o(p)$

Theorem: FDP(t) – FDP_A(t) =
$$o_p(1)$$
, FDP_A(t) = $\frac{\sum_{j=1}^{p} P(\eta_j, t)}{R(t)}$,
if $p^{-1}(\lambda_{k+1}^2 + \dots + \lambda_p^2)^{1/2} \longrightarrow 0$.

If $\lambda_{\max} = o(p^{1/2})$, we can take $k = 0 \implies \text{independence}$ Convergence rate: $o_p(p^{-\delta/2}) \qquad \text{if } p^{-1}(\lambda_{k+1}^2 + \dots + \lambda_p^2)^{1/2} = p^{-\delta}$.

$$\underline{\mathsf{Accuracy}}: |\widehat{\mathsf{FDP}}(t) - \mathrm{FDP}_{\mathrm{A}}(t)| = \mathcal{O}_{\rho}\left(\|\hat{\mathbf{W}} - \mathbf{W}\|\right).$$

イロト イポト イヨト イヨト

Estimated vs true FDP (Simulation results)

Figure: p = 1000, $p_1 = 50$, n = 100, t = 2.8, nonzero $\beta_i = 1$, $N_{sim} = 1000$.

 \star cross = Efron's approach; \star circle = PFA

\star green = Storey's (2002) estimate pt/R(t)

Additional simulation results

Figure: p = 1000, $p_1 = 50$, n = 100, t = 2.8, nonzero $\beta_i = 1$, $N_{sim} = 1000$.

イロト イポト イヨト イヨト

Sar
<u>Conventional methods</u>: Rank determined by $|Z_i|$, not ideal for dependent data. Note that

$$Z_i - \mathbf{b}_i^T \mathbf{W} \sim N(\mu_i, 1 - \|\mathbf{b}_i\|^2),$$

Factor-adjusted method: Use the new test statistics

$$Y_i = a_i(Z_i - \mathbf{b}_i^T \widehat{\mathbf{W}}) \sim N(a_i \mu_i, 1)$$
 • exam

Increase signal-noise ratio

 $a_i = (1 - \|\mathbf{b}_i\|^2)^{-1/2} \ge 1$

イロト イポト イヨト イヨト

3

Rank determined by
$$|Y_i|$$
, **NOT** $|Z_i|$.

<u>Conventional methods</u>: Rank determined by $|Z_i|$, not ideal for dependent data. Note that

$$Z_i - \mathbf{b}_i^T \mathbf{W} \sim N(\mu_i, 1 - \|\mathbf{b}_i\|^2),$$

Factor-adjusted method: Use the new test statistics

$$Y_i = a_i(Z_i - \mathbf{b}_i^T \widehat{\mathbf{W}}) \sim N(a_i \mu_i, 1)$$
 (recommodation)

Increase signal-noise ratio

 $a_i = (1 - \|\mathbf{b}_i\|^2)^{-1/2} \ge 1$

イロト 不得 トイヨト イヨト

3

Rank determined by $|Y_i|$, **NOT** $|Z_i|$.

FDP with Unknown Dependence

イロト 不得下 イヨト イヨト

- What accuracy of $\hat{\Sigma}$ needed for the plug-in method to work?
- What structures of Σ lead to such an accuracy?

<u>Aim</u>: Investigate the required eigen properties.

イロト イポト イヨト イヨト

-

- What accuracy of $\hat{\Sigma}$ needed for the plug-in method to work?
- What structures of Σ lead to such an accuracy?

<u>Aim</u>: Investigate the required eigen properties.

イロト イポト イヨト イヨト

Estimate FDP(t) under Unknown Dependence

O Estimating
$$\Sigma$$
: Obtain an estimate $\hat{\Sigma}$.

Recall $\mathbf{Z} = \mu + \mathbf{BW} + K$. Run OLS ignore μ

2 Estimate factor:
$$\hat{\mathbf{W}} = (\hat{\mathbf{B}}'\hat{\mathbf{B}})^{-1}\hat{\mathbf{B}}'\mathbf{Z} = \operatorname{diag}(\hat{\lambda}_1, \cdots, \hat{\lambda}_k)^{-1}\hat{\mathbf{B}}'\mathbf{Z}$$
.

Estimated FDP: Compute

$$\widehat{\mathrm{FDP}}_{\mathrm{U}}(t) = \sum_{i=1}^{p} [\Phi(\widehat{a}_i(z_{t/2} + \widehat{\eta}_i)) + \Phi(\widehat{a}_i(z_{t/2} - \widehat{\eta}_i))] / R(t)$$

with $\widehat{a}_i = (1 - \|\widehat{\mathbf{b}}_i\|^2)^{-1/2}$ and $\widehat{\mathbf{\eta}}_i = \widehat{\mathbf{b}}_i^T \widehat{\mathbf{w}}$.

イロト イポト イヨト イヨト

Estimate FDP(t) under Unknown Dependence

• Estimating
$$\Sigma$$
: Obtain an estimate $\hat{\Sigma}$.

Recall $\mathbf{Z} = \mu + \mathbf{BW} + K$. Run OLS ignore μ

2 Estimate factor:
$$\hat{\mathbf{W}} = (\widehat{\mathbf{B}}'\widehat{\mathbf{B}})^{-1}\widehat{\mathbf{B}}'\mathbf{Z} = \operatorname{diag}(\hat{\lambda}_1, \cdots, \hat{\lambda}_k)^{-1}\widehat{\mathbf{B}}'\mathbf{Z}$$
.

Estimated FDP: Compute

$$\widehat{\mathrm{FDP}}_{\mathrm{U}}(t) = \sum_{i=1}^{p} [\Phi(\widehat{a}_{i}(z_{t/2} + \widehat{\eta}_{i})) + \Phi(\widehat{a}_{i}(z_{t/2} - \widehat{\eta}_{i}))]/R(t)$$

with
$$\widehat{a}_i = (1 - \|\widehat{\mathbf{b}}_i\|^2)^{-1/2}$$
 and $\widehat{\mathbf{\eta}}_i = \widehat{\mathbf{b}}_i^T \widehat{\mathbf{w}}$.

イロト イポト イヨト イヨト

Theorem 1: Under Conditions C1–C4, we have

$$|\widehat{\mathrm{FDP}}_{\mathrm{U}}(t) - \mathrm{FDP}_{\mathrm{A}}(t)| = O_{p}(p^{-\delta} + kp^{-\kappa} + k\|\mu\|_{2}p^{-1/2}).$$

(C1)
$$R(t)/p > H$$
 for some $H > 0$ as $p \to \infty$.
(C2) $\max_{i \le k} \|\widehat{\gamma}_i - \gamma_i\| = O_p(p^{-\kappa})$ for some $\kappa > 0$.
(C3) $\sum_{i=1}^k |\widehat{\lambda}_i - \lambda_i| = o_p(p^{1-\delta})$.

$$\sum_{i=1}^{k} |\widehat{\lambda}_{i} - \lambda_{i}| = \sum_{i=1}^{k} \lambda_{i} |\widehat{\lambda}_{i} / \lambda_{i} - 1| \le p \max_{i \le k} |\widehat{\lambda}_{i} / \lambda_{i} - 1|.$$

イロト 不得下 イヨト イヨト

Theorem 1: Under Conditions C1–C4, we have

$$|\widehat{\mathrm{FDP}}_{\mathrm{U}}(t) - \mathrm{FDP}_{\mathrm{A}}(t)| = O_{p}(p^{-\delta} + kp^{-\kappa} + k\|\mu\|_{2}p^{-1/2}).$$

(C1)
$$R(t)/p > H$$
 for some $H > 0$ as $p \to \infty$.
(C2) $\max_{i \le k} \|\widehat{\gamma}_i - \gamma_i\| = O_p(p^{-\kappa})$ for some $\kappa > 0$.
(C3) $\sum_{i=1}^k |\widehat{\lambda}_i - \lambda_i| = o_p(p^{1-\delta})$.

$$\sum_{i=1}^{k} |\widehat{\lambda}_{i} - \lambda_{i}| = \sum_{i=1}^{k} \lambda_{i} |\widehat{\lambda}_{i} / \lambda_{i} - 1| \le \rho \max_{i \le k} |\widehat{\lambda}_{i} / \lambda_{i} - 1|.$$

イロト イポト イヨト イヨト

Conditions (C2) and (C3) hold if $\|\widehat{\Sigma} - \Sigma\| = O_{\rho}(\rho^{-\kappa})$ and

 $\lambda_i - \lambda_{i+1} \ge d > 0$ for $i \le k$. (Weyl theorem & Davis and Kahan theorem)

- ★ Operator norm consistency is generally obtained under sparse structures (*Bickel and Levina, 08; Lam and Fan, 09; Cai and Liu, 11*).
- ★ No operator norm consistency for strong dependence (e.g. factor model).

イロト イポト イヨト イヨト

-

Case II: Approximate Factor Model

<u>Model</u>: $\mathbf{y}_i = \boldsymbol{\mu} + \mathbf{B}\mathbf{f}_i + \mathbf{u}_i, \quad i = 1, \cdots, n, \quad \Sigma_u \text{ sparse.}$

• Run singular value decomposition: $\mathbf{S}_n = \sum_{j=1}^p \hat{\lambda}_j \hat{\xi}_j \hat{\xi}_j^T$.

2 Compute
$$\hat{\mathbf{R}} = \sum_{j=k+1}^{p} \hat{\lambda}_{j} \hat{\xi}_{j} \hat{\xi}_{j}^{T}$$
.

Apply (adaptive) thresholding:

$$\widehat{\mathbf{R}}^{\mathcal{T}} = (\widehat{r}_{ij}^{\mathcal{T}}), \quad \widehat{r}_{ij}^{\mathcal{T}} = \widehat{r}_{ij}I(|\widehat{r}_{ij}| \geq \tau_{ij})$$

• Compute $\hat{\Sigma} = \sum_{j=1}^{k} \hat{\lambda}_{j} \hat{\xi}_{j} \hat{\xi}_{j}^{T} + \widehat{\mathbf{R}}^{T}$. (*POET, Fan, Liao, Mincheva, 13*)

Choice of *k***:** Smallest *k* such that $\lambda_k > \varepsilon / \sqrt{p}$

イロト イポト イヨト イヨト

Case II: Approximate Factor Model

Model:
$$\mathbf{y}_i = \boldsymbol{\mu} + \mathbf{B}\mathbf{f}_i + \mathbf{u}_i, \quad i = 1, \cdots, n, \quad \Sigma_u \text{ sparse.}$$

• Run singular value decomposition: $\mathbf{S}_n = \sum_{j=1}^p \hat{\lambda}_j \hat{\xi}_j \hat{\xi}_j^T$.

2 Compute
$$\hat{\mathbf{R}} = \sum_{j=k+1}^{p} \hat{\lambda}_{j} \hat{\xi}_{j} \hat{\xi}_{j}^{T}$$
.

1

Apply (adaptive) thresholding:

$$\widehat{\mathbf{R}}^{\mathcal{T}} = (\widehat{r}_{ij}^{\mathcal{T}}), \quad \widehat{r}_{ij}^{\mathcal{T}} = \widehat{r}_{ij}I(|\widehat{r}_{ij}| \geq \tau_{ij})$$

• Compute $\hat{\Sigma} = \sum_{j=1}^{k} \hat{\lambda}_{j} \hat{\xi}_{j} \hat{\xi}_{j}^{T} + \widehat{\mathbf{R}}^{T}$. (*POET, Fan, Liao, Mincheva, 13*)

Choice of k: Smallest k such that $\lambda_k > \varepsilon / \sqrt{p}$

イロト 不得 トイヨト イヨト

Theorem 3: For approximate factor model, we have

$$\begin{split} \widehat{|\text{FDP}_{\text{POET}}(t) - \text{FDP}_{\text{A}}(t)| &= O_p(\delta_n) + O(k \|\mu\|_2 p^{-1/2}), \end{split}$$

where $\delta_n &= \sqrt{\frac{\log p}{n}} + \frac{1}{\sqrt{p}} + \sqrt{\frac{m_p}{p}} + \frac{p_1}{p}, \text{ when } k \text{ is finite.} \end{split}$

POET is accuracy enough for FPA.

Obtained by an application of Fan, Liao and Mincheva (2013).

イロト イポト イヨト イヨト

Theorem 3: For approximate factor model, we have

$$|\widehat{\text{FDP}}_{\text{POET}}(t) - \text{FDP}_{A}(t)| = O_{p}(\delta_{n}) + O(k ||\mu||_{2} p^{-1/2}),$$

where $\delta_{n} = \sqrt{\frac{\log p}{n}} + \frac{1}{\sqrt{p}} + \sqrt{\frac{m_{p}}{p}} + \frac{p_{1}}{p}$, when *k* is finite.

POET is accuracy enough for FPA.

Obtained by an application of Fan, Liao and Mincheva (2013).

イロト イポト イヨト イヨト

Simulation Studies

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

Simulation Setup

- <u>Model</u>: $\mathbf{y}_i = \mu + \mathbf{B}\mathbf{f}_i + \mathbf{u}_i$ for $i = 1, \dots, n$.
- Components: $\mathbf{f}_i \sim N_3(0, \mathbf{I}_3)$, $\mathbf{u}_i \sim N_p(0, \mathbf{I}_p)$, $\{\mathbf{u}_i\}_{t \geq 1}$ and $\{\mathbf{f}_i\}_{t \geq 1}$ indep.
- Loadings: $\mathbf{B}_{ij} \sim i.i.d. U(-1, 1)$, then fixed.
- Parameters: p = 1000, n = 500, $p_1 = 50$, t = 2.576, nonzero $\mu_i = 1$ and $N_{sim} = 200$.
- **Purposes**: Compare $\widehat{FDP}_A(t)$ vs $\widehat{FDP}_{POET}(t)$.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ ○

Estimating FDP: $\widehat{FDP}_{A}(t)$ vs $\widehat{FDP}_{POET}(t)$

Figure: $\widehat{\text{FDP}}_{A}(t)$ is based on known Σ , p = 1000, n = 500, $p_1 = 50$, t = 2.576, k = 3, nonzero $\mu_i = 1$ and $N_{sim} = 200$. RE= $(\widehat{\text{FDP}}(t) - \text{FDP}(t))/\text{FDP}(t)$.

Jianqing Fan (Princeton University) False Discovery Rate Under Dependence

Estimating FDP: LAD vs LS vs SCAD

Figure: LAD (L_1), LS (L_2), SCAD (penalized L_2) $\rightarrow \langle \Xi \rangle \land \Xi \rangle \land \Xi \land \neg \land \bigcirc$

Jianqing Fan (Princeton University)

False Discovery Rate Under Dependence

Table: Relative error between true FDP(t) and the estimators $\widehat{\text{FDP}}_{A}(t)$ and $\widehat{\text{FDP}}_{\text{POET}}(t)$ obtained by LAD, LS and SCAD.

	$mean(RE_A)$	$SD(RE_A)$	$mean(RE_P)$	$SD(RE_P)$
LAD	0.1818	0.5810	0.1583	0.5797
LS	0.1645	0.5398	0.1444	0.5413
SCAD	0.0700	0.5306	0.0431	0.5223

RE_A and RE_P are the relative errors of $\widehat{\text{FDP}}_{A}(t)$ and $\widehat{\text{FDP}}_{\text{POET}}(t)$.

イロト イポト イヨト イヨト

Estimating FDP: Nonnormality

Figure: The non-normal distribution is *i.i.d.* standardized Student-t with DoE= 5. = - o a contract of the standardized Student-t with DoE = 5. = - o a contract of the standardized Student-t with Student-t with Stud

Jianqing Fan (Princeton University)

False Discovery Rate Under Dependence

Table: Relative error between true FDP(t) and the estimators $\widehat{\text{FDP}}_{A}(t)$ and $\widehat{\text{FDP}}_{\text{POET}}(t)$ under nonnormality.

	$mean(RE_A)$	$SD(RE_A)$	$mean(RE_P)$	$SD(RE_P)$
N-f + N-u	0.1708	0.6364	0.1660	0.6414
N- f + <i>t</i> -u	0.1146	0.5867	0.0908	0.5705
t- f + t-u	0.1637	0.6376	0.1388	0.6549

Figure RE_A and RE_P are the relative errors of $\widehat{\text{FDP}}_{A}(t)$ and $\widehat{\text{FDP}}_{\text{POET}}(t)$.

イロト 不得下 イヨト イヨト

Real Data Analysis

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

Breast Cancer Study (Hedenfalk et al., 2001)

★ Two genetic mutations known to increase breast cancer risk: BRCA1 & BRCA2.

★
$$n = 7$$
 BRCA1 women, $\mathbf{X}_1, \dots, \mathbf{X}_n \sim N_p(\mu^X, \Sigma);$
 $m = 8$ BRCA2 women, $\mathbf{Y}_1, \dots, \mathbf{Y}_m \sim N_p(\mu^Y, \Sigma).$

★ Microarray of expression levels on p = 3226 genes.

Two sample comparison: **BRCA1** \equiv **BRCA2?**

Test statistics:
$$\mathbf{Z} = \sqrt{nm/(n+m)}(\mathbf{\overline{X}} - \mathbf{\overline{Y}}) \sim N_{p}(\mu, \Sigma)$$
, with

$$\mu = \sqrt{nm/(n+m)}(\mu^X - \mu^Y).$$

Multiple hypothesis test:

$$H_{0j}: \mu_j = 0$$
 vs $H_{1j}: \mu_j \neq 0$ $j = 1, \cdots, p$.

イロト 不得 トイヨト イヨト

Gene Expression Heatmap: BRCA1 vs BRCA2

Figure: Red color means overexpression, while green color means underexpression.

Jianqing Fan (Princeton University) False Discovery Rate Under Dependence

R(t), $\widehat{V}(t)$ and $\widehat{FDP}_{POET}(t)$

Figure: $\widehat{\text{FDP}}_{\text{POET}}(t)$ and $\widehat{V}(t)$ as functions of R(t) for p = 3226 genes:

Jianqing Fan (Princeton University)

False Discovery Rate Under Dependence

★ Derive asymptotic expression for FDP under arbitrary dependence;

\star Propose PFA to consistently estimate FDP when Σ unknown;

★ Establish asymptotic theory for the method;

Improve power properties by factor-adjustment;

★ Evaluate finite sample performance by extensive simulation studies.

イロト イポト イヨト イヨト

- ★ Derive asymptotic expression for FDP under arbitrary dependence;
- **\star** Propose PFA to consistently estimate FDP when Σ unknown;
- ★ Establish asymptotic theory for the method;
- ★ Improve power properties by factor-adjustment;
- ★ Evaluate finite sample performance by extensive simulation studies.

イロト イポト イヨト イヨト

Acknowledgement

<ロト < 四ト < 回ト < 回ト < 回ト <</p>

3

DQC

Jianqing Fan (Princeton University) False Discovery Rate Under Dependence

Robust Sparse Quadratic Discriminantion

Jianqing Fan

Princeton University

with Tracy Ke, Han Liu and Lucy Xia

May 26, 2014

イロト 不得下 イヨト イヨト

Introduction

- Rayleigh Quotient for sparse QDA
- Optimization Algorithm
- Application to Classification
- Theoretical Results
- Numerical Studies

イロト イポト イヨト イヨト

3

Introduction

High Dimensional Classification

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

High-dimensional Classification

pervades all facets of machine learning and Big Data

 <u>Biomedicine</u>: disease classification / predicting clinical outcomes / biological process using microarray or proteomics data.

- Machine learning: Document/text classification, image classification
- Social Networks: Community detection

A ∰ ▶ < ∃ ▶ <</p>

Training data: $\{\mathbf{X}_{i1}\}_{i=1}^{n_1}$ and $\{\mathbf{X}_{i2}\}_{i=1}^{n_2}$ for classes 1 and 2. Aim: Classify a new data **X** by $I{f(\mathbf{X}) < c} + 1$ 2 Family of functions *f*: linear, quadratic Criterion for selecting f: logistic, hinge **Convex surrogate** _1

▶ < ∃ ▶</p>

Sparse linear classifiers: Minimize classification errors (Bickel&

Levina, 04, Fan & Fan, 08; Shao et al. 11; Cai & Liu, 11; Fan, et al, 12).

★Works well with Gaussian data with equal variance.

 \star Powerless if centroids are the same; no interaction considered

Heteroscadestic variance? Non-Gaussian distributions?

Plug-in quadratic discriminant.

★ needs Σ_1^{-1} , Σ_2^{-1} ; ★ Gaussianity.

Kernel SVM, logistic regression.

★inadequate use of dist.; ★few results; ★interactions

Minimizing classification error:

 \star non-convex; not easily computable.

く 同 ト く ヨ ト く ヨ ト

- Find a quadratic rule that max. Rayleigh Quotient.
- Non-equal covariance matrices;
- Fourth cross-moments avoided using elliptical distributions
- Uniform estimation of means and variance for heavy-tails.

イロト イポト イヨト イヨト

500
Rayleigh Quotient Optimization

イロト イポト イヨト イヨト

3

In the "classical" setting, Rq(f) is equiv. to Err(f)

In "broader" setting, it is a surrogate of classification error.

イロト イポト イヨト イヨト

Of independent scientific interest.

Rayleigh quotient for quadratic loss

Quadratic projection:
$$Q_{\Omega,\delta}(\mathbf{X}) = \mathbf{X}^{\top} \mathbf{\Omega} \mathbf{X} - 2 \delta^{\top} \mathbf{X}$$
.

With
$$\pi = \mathbb{P}(Y = 1)$$
 and $\kappa = \frac{1-\pi}{\pi}$, we have
 $\operatorname{Rq}(Q) \propto \frac{[D(\Omega, \delta)]^2}{V_1(\Omega, \delta) + \kappa V_2(\Omega, \delta)} = \operatorname{R}(\Omega, \delta),$

•
$$D(\mathbf{\Omega}, \delta) = \mathbb{E}_1 Q(\mathbf{X}) - \mathbb{E}_2 Q(\mathbf{X}).$$

•
$$V_k(\mathbf{\Omega}, \delta) = \operatorname{var}_k(Q(\mathbf{X})), \ k = 1, 2.$$

• Reduce to **<u>ROAD</u>** (*Fan, Feng, Tong, 12*) when linear.

ヘロト 人間 トイヨト イヨト

3

Challenge: involve all fourth cross moments.

Solution: Consider the elliptical family.

$$\mathbf{X} = \mu + \xi \mathbf{\Sigma}^{1/2} \mathbf{U}, \qquad E \xi^2 = d, \quad \mathbf{X} \sim \mathcal{E}(\mu, \mathbf{\Sigma}, g)$$

Variance of Quadratic Form

$$\begin{aligned} \operatorname{var}(Q(\mathbf{X})) &= 2(1+\gamma)\operatorname{tr}(\mathbf{\Omega}\mathbf{\Sigma}\mathbf{\Omega}\mathbf{\Sigma}) + \gamma[\operatorname{tr}(\mathbf{\Omega}\mathbf{\Sigma})]^2 \\ &+ 4(\mathbf{\Omega}\mu - \delta)^\top \mathbf{\Sigma}(\mathbf{\Omega}\mu - \delta), \quad \text{ quadratic in } \mathbf{\Omega}, \delta, \end{aligned}$$

where
$$\gamma = \frac{E(\xi^4)}{d(d+2)} - 1$$
 is the kurtosis parameter

(1日) (1日) (日)

Semiparametric model: Two classes: $\mathcal{E}(\mu_1, \mathbf{\Sigma}_1, g)$ and $\mathcal{E}(\mu_2, \mathbf{\Sigma}_2, g)$.

D, V_1 and V_2 : involve only $\mu_1, \mu_2, \Sigma_1, \Sigma_2$ and γ

Examples of γ :

	Gaussian	t _v	Contaminated Gaussian(ω, τ)	Compound Gaussian $U(1,2)$
γ	0	$\frac{2}{\nu-2}$	$\frac{1+\omega(\tau^4-1)}{(1+\omega(\tau^2-1))^2}-1$	<u>1</u> 6

イロト 不得 トイヨト イヨト

3

Simplification: Using homogeneity,

$$\underset{\Omega,\delta}{\operatorname{argmax}} \frac{[D(\Omega,\delta)]^2}{V_1(\Omega,\delta) + \kappa V_2(\Omega,\delta)} \propto \underset{D(\Omega,\delta)=1}{\operatorname{argmin}} \underbrace{V_1(\Omega,\delta) + \kappa V_2(\Omega,\delta)}_{V(\Omega,\delta)}$$

Sparsified version: $\Omega \in \mathbb{R}^{d \times d}$, $\delta \in \mathbb{R}^{d}$

$$\underset{(\Omega,\delta):D(\Omega,\delta)=1}{\operatorname{argmin}} V(\Omega,\delta) + \lambda_1 |\Omega|_1 + \lambda_2 |\delta|_1.$$

イロト イポト イヨト イヨト

э

Applicable to linear discriminant \implies ROAD

Robust Estimation and Optimization Algorithm

イロト イポト イヨト イヨト

3

Problems: Elliptical distributions can have heavy tails.

<u>Challenges</u>: ★Sample median \approx mean when skew (e.g. EX^2) ★Need uniform conv. for exponentially many σ_{ii}^2 .

How to estimate mean with exponential concentration for heavy tails?

・ 同 ト ・ ヨ ト ・ ヨ ト

Problems: Elliptical distributions can have heavy tails.

<u>Challenges</u>: ★Sample median \approx mean when skew (e.g. EX^2) ★Need uniform conv. for exponentially many σ_{ii}^2 .

How to estimate mean with exponential concentration for heavy tails?

マロト イヨト イヨト

Catoni's M-estimator $\widehat{\mu}$

$$\sum_{i=1}^{n} h(\alpha_{n,d}(\mathbf{x}_{ij} - \widehat{\mu}_{j})) = \mathbf{0}, \qquad \alpha_{n,d} \to \mathbf{0}.$$

h strictly increasing: log(1 - y + y²/2) ≤ h(y) ≤ log(1 + y + y²/2).
 a_{n,d} = { 4log(n∨d) / n[v + 4vlog(n∨d)] / n - 4log(n∨d)] }^{1/2} with v ≥ max_j σ_{jj}².

ヘロト 人間 とくほとう ほんし

•
$$\widehat{\eta}_j = \widehat{EX_j^2}$$
, Catoni's M-estimator using $\{x_{1j}^2, \cdots, x_{nj}^2\}$.

2 variance estimation: for a small δ_0 ,

$$\widehat{\sigma}_{j}^{2} = \widehat{\Sigma}_{jj} = \max\{\widehat{\eta}_{j} - \widehat{\mu}_{j}^{2}, \delta_{0}\}.$$

Off-diagonal elements:

$$\widehat{\Sigma}_{jk} = \widehat{\sigma}_{j} \widehat{\sigma}_{k} \underbrace{\sin(\pi \widehat{\tau}_{jk}/2)}_{\text{robust corr}}$$

 $\hat{\tau}_{ik}$: Kendall's tau correlation (*Liu, et al, 12; Zou & Xue, 12*).

イロト イポト イヨト イヨト

 $\widehat{\Sigma} \text{ is indefinite: } \underbrace{\text{sup-norm projection}}_{\mathbf{A} \geq 0}:$ $\widetilde{\Sigma} = \underset{\mathbf{A} \geq 0}{\operatorname{argmin}} \left\{ |\mathbf{A} - \widehat{\mathbf{\Sigma}}|_{\infty} \right\}, \quad \text{convex optimization}$

 $\underline{\text{Property}}: \ |\widetilde{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}|_{\infty} \leq 2|\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}|_{\infty}.$

イロト イポト イヨト イヨト

э

Recall:
$$\gamma = \frac{1}{d(d+2)} \mathbb{E}(\xi^4) - 1$$
 and
$$\mathbb{E}(\xi^4) = \mathbb{E}\{[(\mathbf{X} - \mu)^\top \mathbf{\Sigma}^{-1} (\mathbf{X} - \mu)]^2\}.$$

Intuitive estimator: —also estimable for subvectors.

$$\widehat{\boldsymbol{\gamma}} = \max\left\{\frac{1}{d(d+2)}\frac{1}{n}\sum_{i=1}^{n}\left[(\mathbf{X}_{i}-\widetilde{\boldsymbol{\mu}})^{\top}\widetilde{\boldsymbol{\Omega}}(\mathbf{X}_{i}-\widetilde{\boldsymbol{\mu}})\right]^{2}-1, \quad 0\right\},\$$

 $\star \widetilde{\mu}$ and $\widetilde{\Omega}$ are estimators of μ and Σ^{-1} (CLIME, *Cai, et al, 11*).

$$\underline{\text{Properties:}} |\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}| \leq C \max \left\{ |\widetilde{\boldsymbol{\mu}} - \boldsymbol{\mu}|_{\infty}, |\widetilde{\boldsymbol{\Omega}} - \boldsymbol{\Sigma}^{-1}|_{\infty} \right\}.$$

イロト イポト イヨト イヨト

Linearized Augmented Lagrangian

Target: $\min_{D(\Omega,\delta)=1} V(\Omega,\delta) + \lambda_1 |\Omega|_1 + \lambda_2 |\delta|_1$.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Linearized Augmented Lagrangian: Details

- $\Omega^{(k)} = \operatorname{argmin}_{\Omega} \left\{ F_{\rho}(\Omega, \delta^{(k-1)}, \nu^{(k-1)}) + \lambda_1 |\Omega|_1 \right\},$ (soft-thresh.)
- $\delta^{(k)} = \text{argmin}_{\delta} \left\{ F_{\rho}(\Omega^{(k)}, \delta, \nu^{(k-1)}) + \lambda_2 |\delta|_1 \right\}$, (LASSO)

•
$$v^{(k)} = v^{(k-1)} + 2\rho[D(\Omega^{(k)}, \delta^{(k)}) - 1]$$

Application to Classification

ヘロト 人間 トイヨト イヨト

3

Sac

Finding a Threshold

Where to Cut???

<ロト < 回 > < 回 > < 回 > < 回 > .

= 990

Back to approx

イロト 不得 トイヨト イヨト

3

- ★ Classification rule: $I\{\mathbf{Z}^{\top}\mathbf{\Omega}\mathbf{Z} 2\mathbf{Z}^{\top}\delta < c\} + 1$.
- ★ Reparametrization: $c = tM_1(\Omega, \delta) + (1 t)M_2(\Omega, \delta)$.

★ Minimizing wrt t an **approximated** classification error:

$$\overline{\mathrm{Err}}(t) \equiv \pi \bar{\Phi}\left(\frac{(1-t)D(\mathbf{\Omega},\delta)}{\sqrt{V_1(\mathbf{\Omega},\delta)}}\right) + (1-\pi)\bar{\Phi}\left(\frac{tD(\mathbf{\Omega},\delta)}{\sqrt{V_2(\mathbf{\Omega},\delta)}}\right),$$

Overview of Our Procedure

■▶ ■ のへの

Theoretical Results

ヘロト 人間 トイヨト イヨト

= nar

Oracle solution corresponding to λ_0 :

$$(\boldsymbol{\Omega}^*_{\lambda_0}, \boldsymbol{\delta}^*_{\lambda_0}) = \operatorname*{argmin}_{D(\boldsymbol{\Omega}, \boldsymbol{\delta}) = 1} \big\{ V(\boldsymbol{\Omega}, \boldsymbol{\delta}) + \lambda_0 |\boldsymbol{\Omega}|_1 + \lambda_0 |\boldsymbol{\delta}|_1 \big\}.$$

Estimates from Quadro:

$$(\widehat{\boldsymbol{\Omega}},\widehat{\boldsymbol{\delta}}) = \operatorname*{argmin}_{\widehat{D}(\boldsymbol{\Omega},\boldsymbol{\delta})=1} \big\{ \widehat{V}(\boldsymbol{\Omega},\boldsymbol{\delta}) + \lambda |\boldsymbol{\Omega}|_1 + \lambda |\boldsymbol{\delta}|_1 \big\}$$

イロト イポト イヨト イヨト

3

Challenges: Constraints involve estimators, not unbiased.

- Oracle performance in terms of Raleigh Quotient under RE.
- Its generalization allows flexibility of sparsity.
- $\overline{\text{Err}}(t)$ provides a valid approximation.
- Raleight Quotient provides a good surrogate for classification error.

イロト イポト イヨト イヨト

But target is quadratic in Ω and δ .

$$\mathbf{Q}_{k} = \begin{bmatrix} (2(1+\gamma)\boldsymbol{\Sigma}_{k} + 4\mu_{k}\mu_{k}^{\top}) \otimes \boldsymbol{\Sigma}_{k} + \gamma \operatorname{vec}(\boldsymbol{\Sigma}_{k})\operatorname{vec}(\boldsymbol{\Sigma}_{k})^{\top} & -4\mu_{k} \otimes \boldsymbol{\Sigma}_{k} \\ -4\mu_{k}^{\top} \otimes \boldsymbol{\Sigma}_{k} & 4\boldsymbol{\Sigma}_{k} \end{bmatrix}$$

RE on Q = **Q**₁ + κ **Q**₂: For *S* and $\bar{c} \ge 0$, define its RE by

$$\Theta(S;\bar{c}) = \min_{\mathbf{V}: |\mathbf{V}_{S^c}|_1 \leq \bar{c} |\mathbf{V}_{S}|_1} \frac{\mathbf{v}^\top \mathbf{Q} \mathbf{v}}{|\mathbf{v}_S|^2}.$$

(Bickel et al, 09; van de Geer, 07; Candes and Tao, 05)

イロト イ理ト イヨト イヨト

э

Oracle Inequality on Rayleigh Quotient

Oracle Inequality on Rayleigh Quotient

With
$$\lambda = C\eta \max\{s_0^{1/2}\Delta_n, k_0^{1/2}\lambda_0\}[R(\mathbf{\Omega}^*_{\lambda_0}, \delta^*_{\lambda_0})]^{-1/2},$$

$$\frac{R(\widehat{\mathbf{\Omega}}, \widehat{\delta})}{R(\mathbf{\Omega}^*_{\lambda_0}, \delta^*_{\lambda_0})} \ge 1 - A\eta^2 \max\{s_0\Delta_n, s_0^{1/2}k_0^{1/2}\lambda_0\}.$$

Estimation error: $\Delta_n = \max_{k=1,2} \{ |\widehat{\boldsymbol{\Sigma}}_k - \boldsymbol{\Sigma}_k|_{\infty}, |\widehat{\boldsymbol{\mu}}_k - \boldsymbol{\mu}_k|_{\infty} \}.$ Sparsity: $S = \operatorname{supp}[\operatorname{vec}(\boldsymbol{\Omega}_{\lambda_0}^*)^\top, (\delta_{\lambda_0}^*)^\top]^\top, s_0 = |S|$ and $k_0 = \max\{s_0, \mathbf{R}(\boldsymbol{\Omega}_{\lambda_0}^*, \delta_{\lambda_0}^*)\}.$

• For some $a_0, c_0, u_0 > 0$, $\Theta(S, 0) \ge c_0$, $\Theta(S, 3) \ge a_0$, and $R(\mathbf{\Omega}^*_{\lambda_0}, \delta^*_{\lambda_0}) \ge u_0$.

イロト イロト イヨト イヨト 二日

• $\max\{s_0\Delta_n, s_0^{1/2}k_0^{1/2}\lambda_0\} < 1, \quad 4s_0\Delta_n^2 < a_0c_0.$

Oracle Inequality on Rayleigh Quotient

Oracle Inequality on Rayleigh Quotient

With
$$\lambda = C\eta \max\{s_0^{1/2}\Delta_n, k_0^{1/2}\lambda_0\}[R(\Omega^*_{\lambda_0}, \delta^*_{\lambda_0})]^{-1/2},$$

$$\frac{R(\widehat{\Omega}, \widehat{\delta})}{R(\Omega^*_{\lambda_0}, \delta^*_{\lambda_0})} \ge 1 - A\eta^2 \max\{s_0\Delta_n, s_0^{1/2}k_0^{1/2}\lambda_0\}.$$

Estimation error: $\Delta_n = \max_{k=1,2} \{ |\widehat{\boldsymbol{\Sigma}}_k - \boldsymbol{\Sigma}_k|_{\infty}, |\widehat{\boldsymbol{\mu}}_k - \boldsymbol{\mu}_k|_{\infty} \}$. Sparsity: $S = \operatorname{supp}[\operatorname{vec}(\boldsymbol{\Omega}_{\lambda_0}^*)^\top, (\delta_{\lambda_0}^*)^\top]^\top, s_0 = |S|$ and $k_0 = \max\{s_0, \operatorname{R}(\boldsymbol{\Omega}_{\lambda_0}^*, \delta_{\lambda_0}^*)\}$.

• For some $a_0, c_0, u_0 > 0$, $\Theta(S, 0) \ge c_0$, $\Theta(S, 3) \ge a_0$, and $R(\mathbf{\Omega}^*_{\lambda_0}, \delta^*_{\lambda_0}) \ge u_0$.

• max{
$$s_0\Delta_n, s_0^{1/2}k_0^{1/2}\lambda_0$$
} < 1, 4 $s_0\Delta_n^2 < a_0c_0$.

イロト 不得 とくき とくきとうき

SOG

Corrolary 2 ($\lambda_0 = 0$): With our robust est, when

$$\lambda > Cs_0^{1/2} R_{\max}^{-1/2} \sqrt{\log(d)/n},$$

with prob $\geq 1 - (n \lor d)^{-1}$,

$$R(\widehat{\mathbf{\Omega}},\widehat{\delta}) \geq \left(1 - As_0\sqrt{\log(d)/n}
ight)R_{\max},$$

イロト イポト イヨト イヨト

3

 $\star R_{\max} = R(\mathbf{\Omega}_0^*, \delta_0^*),$

To definition

イロト イポト イヨト イヨト

3

500

Under normality & mild conditions, as $d \rightarrow \infty$,

$$\left|\operatorname{Err}(\mathbf{\Omega},\delta,t)-\overline{\operatorname{Err}}(\mathbf{\Omega},\delta,t)\right|=rac{\operatorname{rank}(\mathbf{\Omega})+\mathbf{o}(\mathbf{d})}{\left[\min\{\mathbf{V}_{\mathbf{1}}(\mathbf{\Omega},\delta),\mathbf{V}_{\mathbf{2}}(\mathbf{\Omega},\delta)\}\right]^{3/2}}.$$

★ If $\operatorname{var}_k(Q(\mathbf{X})) > c_0 d^{\theta}$ for $\theta > 2/3$, then $|\operatorname{Err} - \overline{\operatorname{Err}}| = o(1)$. ★ $t^* = \underset{t}{\operatorname{argmin}} \overline{\operatorname{Err}}(\mathbf{\Omega}, \delta, t)$ is reasonable.

Rayleigh Quotient versus $\overline{\mathrm{Err}}(\Omega, \delta, t)$: Notation

•
$$H(x) = \overline{\Phi}(1/\sqrt{x})$$
, where $\overline{\Phi} = 1 - \Phi$.

•
$$R^{(t)} = R(\mathbf{\Omega}, \delta)$$
 w/ weight $\kappa(t) \equiv \frac{1-\pi}{\pi} \frac{(1-t)^2}{t^2}$.

•
$$R_k = R_k(\mathbf{\Omega}, \delta) = [D(\mathbf{\Omega}, \delta)]^2 / V_k(\mathbf{\Omega}, \delta)$$
, for $k = 1, 2$.

•
$$U_1 = U_1(\Omega, \delta, t) = \min\left\{(1-t)^2 R_1, \frac{1}{(1-t)^2 R_1}\right\}.$$

•
$$U_2 = U_2(\mathbf{\Omega}, \delta, t) = \min\left\{t^2 R_2, \frac{1}{t^2 R_2}\right\}.$$

•
$$U = U(\mathbf{\Omega}, \delta, t) = \max\{U_1/U_2, U_2/U_1\}.$$

•
$$R_0 = \max\{\min\{R_1, 1/R_1\}, \min\{R_2, 1/R_2\}\} \& \Delta R = |R_1 - R_2|.$$

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

Rayleigh Quotient versus $\overline{\mathrm{Err}}(\mathbf{\Omega}, \delta, t)$

Distance between $\overline{\operatorname{Err}}(\Omega, \delta, t)$ and monotone transform of $R(\Omega, \delta)$

There exists a constant C > 0 such that

$$\overline{\operatorname{Err}}(\mathbf{\Omega},\delta,t)-H\left(\frac{\pi}{(1-t)^2R^{(t)}(\mathbf{\Omega},\delta)}\right)\bigg|\leq C\big[\max\{U_1,U_2\}\big]^{1/2}\cdot|U-1|^2.$$

In particular, when t = 1/2,

$$\left|\overline{\operatorname{Err}}(\boldsymbol{\Omega},\boldsymbol{\delta},t)-H\left(\frac{4\pi}{R^{(t)}(\boldsymbol{\Omega},\boldsymbol{\delta})}\right)\right|\leq CR_0^{1/2}\cdot\left(\frac{\Delta R}{R_0}\right)^2.$$

★Remarks:

- $|V_1 V_2| \ll \min\{V_1, V_2\}$, then $\Delta R \ll R_0$.
- $R_0 \leq 1$ always. $R_0 \rightarrow 0$ when $R_1, R_2 \rightarrow \infty$, or $R_1, R_2 \rightarrow 0$, or $R_1 \rightarrow 0, R_2 \rightarrow \infty$.
- Under mild conditions, a monotone transform of $R(\Omega, \delta)$ approximates \overline{Err} , and hence approximates the true error $Err(\Omega, \delta)$.

イロト イポト イヨト イヨト

= nar

Numerical Studies

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

- $d = 40, n_1 = n_2 = 50$, testing: $N_1 = N_2 = 4000$.
- Repeat 100 times.
- Augmented Lagrangian parameters:

$$\rho = 0.5, \nu^0 = 0, \delta^0 = \textbf{0}.$$

ヘロト 人間 トイヨト イヨト

3

• (λ_1, λ_2) are chosen by optimal tuning.

★ Model 1:
$$\Sigma_1 = I$$
, $\Sigma_2 = \text{diag}(\mathbf{1.3}_{10}, \mathbf{1}_{30})$, $\mu_2 = (\mathbf{0.7}_{10}^{\top}, \mathbf{0}_{30}^{\top})^{\top}$.

★ Model 2:
$$\Sigma_1 = \text{diag}(\mathbf{A}, \mathbf{I}_{20})$$
, with **A** equi-corr $\rho = 0.4$.
 $\Sigma_2 = (\Sigma_1^{-1} + \mathbf{I})^{-1}$. $\mu_2 = \mathbf{0}_d$.

★ Model 3: Σ_1 , Σ_2 as Model 2 and μ_2 as Model 1.

<u>Methods</u>: ★Sparse Logistic Reg with interactions (SLR) ★Linear-SLR ★ROAD ★Quadro-0 (non-robust)

イロト イポト イヨト イヨト

<u>Multivariate t-dist.</u>: $t_v(\mu_1, \Sigma_1)$ and $t_v(\mu_2, \Sigma_2)$, with v = 5.

★ Model 4: Same as Model 1.

★ Model 5: Same as Model 1, but Σ_2 fractional WN w/ I = 0.2, i.e. $|\Sigma_2(i,j)| = O(|i-j|^{1-2I})$.

★ Model 6: Same as Model 1, but $\Sigma_2 = (0.6^{|j-k|})$ —AR(1).

イロト イポト イヨト イヨト

= nar

Results — Classification errors

ヘロト 人間 トイヨト イヨト

= 990

	QUADRO	SLR	L-SLR	ROAD
Model 1	0.179	0.235	0.191	0.246
Model 2	0.144	0.224	0.470	0.491
Model 3	0.109	0.164	0.176	0.235

	QUADRO	QUADRO-0	SLR	L-SLR
Model 4	0.136	0.144	0.167	0.157
Model 5	0.161	0.173	0.184	0.184
Model 6	0.130	0.129	0.152	0.211

ヘロト 人間 トイヨト イヨト

= 990

Results — Rayleigh Quotients

Jianging Fan (Princeton University)

<ロト < 四ト < 三ト < 三ト

2

DQC
	QUADRO	SLR	L-SLR	ROAD
Model 1	3.016	1.874	2.897	2.193
Model 2	3.081	1.508	0	0
Model 3	5.377	2.681	3.027	2.184

	QUADRO	QUADRO-0	SLR	L-SLR
Model 4	3.179	2.975	1.984	2.846
Model 5	2.415	2.191	1.625	2.166
Model 6	2.374	2.160	1.363	1.669

イロト イヨト イヨト イヨト

3

590

Empirical Study: Breast Tumor Data

<u>GPL96 data</u>: d = 12679 genes, $n_1 = 1142$ (breast tumor) and

 $n_2 = 6982$ (non-breast tumor).

Testing and training: 200 and 942 samples from each class.

★Repeat 100 times

<u>**Tuning parameters**</u>: Half used to estimate (δ, Σ) ; half selecting regularization parameters.

Classification errors on testing set				
QUADRO	SLR	L-SLR		
0.014	0.025	0.025		
(0.007)	(0.007)	(0.009)		

イロト イロト イヨト イヨト

Pathway Enrichment

Quadro pathways (139)

SLR pathways (128)

Figure: From KEGG database, genes selected by Quadro belong to 5 of the pathways that contain more than two genes; correspondingly, genes selected by SLR belong to 7 pathways.

- ★ QUADRO provides fewer, but more enriched pathways.
- ★ ECM-receptor is highly related to breast cancer.

Gene Ontology (GO) Enrichment Analysis

GO ID	GO attribute	No. of Genes	p-value
0048856	anatomical structure development	58	3.7E-12
0032502	developmental process	62	2.9E-10
0048731	system development	52	3.1E-10
0007275	multicellular organismal development	55	1.8E-8
0001501	skeletal system development	15	1.3E-6
0032501	multicellular organismal process	66	1.4E-6
0048513	organ development	37	1.4E-6
0009653	anatomical structure morphogenesis	28	8.7E-6
0048869	cellular developmental process	34	1.9E-5
0030154	cell differentiation	33	2.1E-5
0007155	cell adhesion	18	2.4E-4
0022610	biological adhesion	18	2.2E-4
0042127	regulation of cell proliferation	19	2.9E-4
0009888	tissue development	17	3.7E-4
0007398	ectoderm development	9	4.8E-4
0048518	positive regulation of biological process	34	5.6E-4
0009605	response to external stimulus	20	6.3E-4
0043062	extracellular structure organization	8	7.4E-4
0007399	nervous system development	22	8.4E-4

- ★ Selected biological processes are related to previously enriched pathways.
- Cell adhesion is known to be highly related to cell communication pathways, including focal adhesion and ECM-receptor interaction.

★ Propose Rayleigh Quotient for quadratic classification.

 \star Use elliptical dist to avoid fourth cross-moments.

★ Adopt Catoni's M-est and Kendall's tau for robust est.

★ Convex optimization solved by augmented Lagrangian.

 \star Explore its applications to classification.

★ Oracle inequalities, Rayleigh quotient and class. error.

イロト イポト イヨト イヨト

★ Propose Rayleigh Quotient for quadratic classification.

- \star Use elliptical dist to avoid fourth cross-moments.
- ★ Adopt Catoni's M-est and Kendall's tau for robust est.
- ★ Convex optimization solved by augmented Lagrangian.
- \star Explore its applications to classification.
- ★ Oracle inequalities, Rayleigh quotient and class. error.

イロト イポト イヨト イヨト

The End

<ロト < 回 > < 回 > < 回 > < 回 > .

3

DQC

