Back to the Future:
 Valid Analysis of Big Data

Jianqing Fan

Princeton University

Mav 272014

Jianqing Fan (Princeton University)

Outline

■Are Fundamental Assumptions in High-dimensional Statistics Verifiable?
(1) What are Big Data?
(2) What are key assumptions in high-dim inference?
(3) How to verify them?
(9) What are the consequence when violated?
(5) How to pose realistic and verifiable assumptions?

Explanation of Title

Most high-dim methods are based on $E(\varepsilon \mathbf{X})=0$ (exogeneity).

They are unrealistic, and often wrong.

All high-dim math is beautiful and correct!

What is Big Data?

■Large and Complex Data: \star Structured (n and p are both large) \star Unstructured (text, web, videos)
\star Biological Sci.: Genomics, Medicine, Genetics, Neurosci

* Engineering: Machine learning, computer vision, networks.
\star Social Sci.: Economics, business, and digital humanities.
* Natural Sci.: Meteorology, earth science, astronomy.

Characterize contemporary scientific and decision problems.

What is Big Data?

■Large and Complex Data: \star Structured (n and p are both large) \star Unstructured (text, web, videos)
\star Biological Sci.: Genomics, Medicine, Genetics, Neurosci

* Engineering: Machine learning, computer vision, networks.
\star Social Sci.: Economics, business, and digital humanities.
* Natural Sci.: Meteorology, earth science, astronomy.

■Characterize contemporary scientific and decision problems.

Examples: Biological Sciences

- Bioinformatic: disease classification / predicting clinical outcomes / biological process using microarray or proteomics data.

- Assoc. between phenotypes and SNPs \& gene exp (QTL \& eQTL).

- Detecting activated voxels after stimulii in neuroscience.

What can big data do?

Hold great promises for understanding
\star Heterogeneity: personalized medicine or services

* Commonality: in presence of large variations (noises)
from large pools of variables, factors, genes, environments and their interactions as well as latent factors.

Aims of High-dimensional statistical inference

■ Risk property: To construct as effective a method as possible to predict future observations. $\quad \star$ Correlation

- Feature selection and risk property: To gain insight into the relationshin between features and response for scientific purposes, as well as, hopefully, to construct an improved prediction method.
*Fan and Li (2006), Bickel (2008, JRSS-B)

Aims of High-dimensional statistical inference

■ Risk property: To construct as effective a method as possible to predict future observations. $\quad \star$ Correlation

■ Feature selection and risk property: To gain insight into the relationship between features and response for scientific purposes, as well as, hopefully, to construct an improved prediction method.
\star Causation
\star Fan and Li (2006), Bickel (2008, JRSS-B)

Impact of Big Data

- Data Acquisition: Multiple platforms, bias sampling, experimental variations, measurement errors.
- Data Management: Storage, memory, preprocessing, queries.
- Computing infrastructure: distributed file systems and cloud computing
- Computation: new paradigms on optimization and computing: high-performance and parallel computing.
- Data analysis: Noise accumulation, spurious correlations,
incidental endogeneity, measurement errors, and

Impact of Big Data

- Data Acquisition: Multiple platforms, bias sampling, experimental variations, measurement errors.
- Data Management: Storage, memory, preprocessing, queries.
- Computing infrastructure: distributed file systems and cloud computing
- Computation: new paradigms on optimization and computing: high-performance and parallel computing.
- Data analysis: Noise accumulation, spurious correlations,
incidental endogeneity, measurement errors, and

Impact of Big Data

- Data Acquisition: Multiple platforms, bias sampling, experimental variations, measurement errors.
- Data Management: Storage, memory, preprocessing, queries.
- Computing infrastructure: distributed file systems and cloud computing
- Computation: new paradigms on optimization and computing: high-performance and parallel computing.
- Data analysis: Noise accumulation, spurious correlations, incidental endogeneity, measurement errors, and heteroaeneitv.

Are our assumptions verifiable?

Analysis of High-dim Data

Collect data: e.g. Unemployment rates

Bioinformatic: disease classs. / clinical outcomes w/ "-omics" data.

$\underline{\text { Regularization: Use PLS (Lasso \& Scad) to get } \mathcal{S}_{0} \text { and } \beta_{0} \text {. } ~}$ Done!

Key Assumptions: Exogeneity

Stylized Model: $Y=\mathbf{X}^{\top} \beta_{0}+\varepsilon, \quad \beta_{0}$ sparse

$$
E \varepsilon \mathbf{X}=0 \quad \text { or } \quad E(\varepsilon \mid \mathbf{X})=0
$$

There are tens of thousand of equations!
■Related to identifiability!

Are X_{j} and $\hat{\varepsilon}$ uncorrelated?

What consequence if not?

How to do it right?

Are X_{j} and $\hat{\varepsilon}$ uncorrelated?

What consequence if not?

How to do it right?

Are X_{j} and $\hat{\varepsilon}$ uncorrelated?

What consequence if not?

How to do it right?

Example: Distribution of correlations

Data: 90 western Europeans from 'HapMap' project
Response: expressions of CHRNA6, cholinergic receptor, nicotinic, alpha 6 (554 SNPs within 1MB).
Covariates: All other expressions ($p=47292$)

Validating Exogeneity Assumption

Lasso: Select 23 variables.

Moral: High-dimensionality is a source of incidental endogeneity

Incidental Endogeneity

An Illustration

True model: $Y=2 X_{1}+X_{2}+\varepsilon$, $\operatorname{corr}\left(X_{1}, \varepsilon\right)=0, \operatorname{corr}\left(X_{2}, \varepsilon\right)=0$

Netting: Collecting many variables $\left\{X_{j}\right\}_{j=1}^{p}$. Incidentally,

$$
\operatorname{corr}(X_{j}, \underbrace{Y-2 X_{1}-X_{2}}_{\varepsilon}) \neq 0 . \quad \text { Endogeneity }
$$

\square Many X_{j} 's related to Y, hence to ε incidentally due to large p.

High dim causes incidental endogeneity

Outcome: $Y=$ clinical, biological, or health, credit
Exogenous model: $Y=\underbrace{\mathbf{X}_{S_{0}}^{T} \beta_{0}+\varepsilon}_{E\left(\varepsilon \mid \mathbf{X}_{S_{0}}\right)=0}$, unknown S_{0}. collect many
e.g. gene expressions
e.g. microecon/risk factors, related to Y

Hard to make: $E \underbrace{\left(Y-\mathbf{X}_{S_{0}}^{T} \beta_{0}\right)}_{\varepsilon} X_{j}=0$ for all j

Incidental Endogeneity

H_{1} : high-dim causes endogeneity

Any tools to test?

What are verifiable assumptions?

Incidental Endogeneity

H_{1} : high-dim causes endogeneity

Any tools to test?

What are verifiable assumptions?

Incidental Endogeneity

H_{1} : high-dim causes endogeneity

Any tools to test?

What are verifiable assumptions?

Test against Exogeneity

Raw Materials and Visualization

Raw materials: Residuals $\hat{\varepsilon}$ after regularized fit:

$$
\left\{\mathrm{r}_{\mathrm{j}}=\operatorname{corr}\left(\hat{\varepsilon}, \mathbf{X}_{\mathrm{j}}\right)\right\}_{j=1}^{p} \quad \text { Visualized by histogram }
$$

Example: Apply Lasso to 'HapMap' project data

Test statistics and null distributions

■What is null dist. of the histogram?
\star KS test: $T_{1}=\left\|\hat{F}_{n}(x)-F_{0}(x)\right\|_{\infty}$,
\star CVM test $T_{2}=\left\|\hat{F}_{n}(x)-F_{0}(x)\right\|_{2}^{2}$.
■What are the null distributions when p is large?

What is new: $\left\{\mathbf{X}_{j}\right\}_{j=1}^{p}$ are correlated!

Relation to random geometry

-What is the empirical dist of angles between p random points on the n-dim unit sphere and the north pole?

What are the dist. of the min angle or ave angle?
■See Cai, Fan, and Jiang (13) for both large n and small n when $p \rightarrow \infty$, but for independent random points.

Other test statistics

$$
T_{3}=p^{-1} \sum_{j=1}^{p} r_{j}^{q}, \quad T_{4}=\max _{1 \leq j \leq p}\left|r_{j}\right|
$$

- They are empirical q-th moment and ∞-moment of $\hat{F}_{n}(x)$, corresponding to the ave ($q=1$) and min angles.

Ł More powerful for a small fraction of departures, but can not give an estimate of the proportion of violations.

- Their distributions under depend. covariates.

Consequence of Endogeneity

Consequence of Endogeneity

■Necessary condition for any PLS consistent is exogeneity:
$E X_{j} \varepsilon=0, \forall j$ (Fan and Yuan, 14).

Scientific Implications: Can choose wrong sets of genes or SNPs using LASSO/SCAD in presence of endogeneity.

■elated to model identifiability, e.g.

Consequence of Endogeneity

■ Necessary condition for any PLS consistent is exogeneity: $E X_{j} \varepsilon=0, \forall j$ (Fan and Yuan, 14).

Scientific Implications: Can choose wrong sets of genes or SNPs using LASSO/SCAD in presence of endogeneity.

■Related to model identifiability, e.g.

$$
\begin{aligned}
Y & =2 X_{1}+X_{2}+\varepsilon, & E X_{1} \varepsilon=E X_{2} \varepsilon=0 \\
& =a_{3} X_{3}+a_{4} X_{4}+a_{5} X_{5}+\varepsilon^{*}, & E X_{j} \varepsilon^{*}=0, j=3,4,5 .
\end{aligned}
$$

Simulation Results

True model: $\beta_{S}^{0}=(5,-4,7,-1,1.5), \mathbf{Z} \sim N(0, \boldsymbol{\Sigma}), \sigma_{i j}=0.5^{|i-j|}$
$X_{j}=Z_{j}$ for $j \leq 100$ (exogenous), $\quad X_{j}=\left(Z_{j}+5\right)(\varepsilon+1)$, (endogenous).
$\square n=200, p=300,100$ replicates.

	PLS	FGMM				
	$\lambda=0.1$	$\lambda=0.5$	$\lambda=0.1$	post-FGMM	$\boldsymbol{\lambda}=0.2$	post-FGMM
MSE $_{S}$	0.278	0.712	0.215	0.190	$\mathbf{0 . 2 4 1}$	$\mathbf{0 . 1 8 8}$
MSE $_{N}$	0.541	0.118	0.018		0.006	
TP-Mean	5	4.733	5		4.97	
FP-Mean	206.26	31.14	3.56		3.58	

Verifiable Assumptions

Low dimensional assumption

Model selection consistency under

$$
Y=\mathbf{X}_{S_{0}}^{T} \beta_{0}+\varepsilon, \quad \mathrm{E}\left(\varepsilon \mid \mathbf{X}_{\mathrm{S}_{0}}\right)=0
$$

or weaker, e.g. $E \mathbf{X}_{S_{0}} \varepsilon=0, \quad E X_{S_{0}}^{2} \varepsilon=0$.

E Easier to validate: only $2\left|S_{0}\right|$ correlations to be validated.

- Use over-identification to screen endogeneious variables:

FGMM (Fan\&Liao, 14)

Low dimensional assumption

Model selection consistency under

$$
Y=\mathbf{X}_{S_{0}}^{T} \beta_{0}+\varepsilon, \quad \mathrm{E}\left(\varepsilon \mid \mathbf{X}_{\mathrm{S}_{0}}\right)=0
$$

or weaker, e.g. $E X_{S_{0}} \varepsilon=0, \quad E X_{S_{0}}^{2} \varepsilon=0$.

Easier to validate: only $2\left|S_{0}\right|$ correlations to be validated.
■ Use over-identification to screen endogeneious variables:
FGMM (Fan\&Liao, 14)

Focussed GMM

$\square f o c u s e d$ on endogeneity screening by

$$
L_{\mathrm{FGMM}}(\beta)=\|\frac{1}{n} \sum_{i=1}^{n} \overbrace{\left(Y_{i}-\mathbf{X}_{S, i}^{T} \beta_{S}\right)}^{\varepsilon_{i}}\binom{\mathbf{X}_{S, i}}{f\left(\mathbf{X}_{S, i}\right)}\|_{w} .
$$

Example: $f(x)=x^{2}$ or $f(x)=|x-\bar{x}|$

Over-identification Condition: Any $\mathcal{S} \supset$ endogenous var.

$$
\min _{\beta_{S}}\|\underbrace{E\left(Y-\mathbf{X}_{S}^{T} \beta_{S}\right) \mathbf{X}_{S}}_{|\mathcal{S}| \text { equations }}\|^{2}+\|\underbrace{E\left(Y-\mathbf{X}_{S}^{T} \beta_{S}\right) f\left(\mathbf{X}_{S}^{2}\right)}_{|\mathcal{S}| \text { equations }}\|^{2} \geq c .
$$

Example: Hap Map Data

$$
\operatorname{corr}\left(X_{j}, \hat{\varepsilon}\right), \forall j
$$

$$
\left\{\operatorname{corr}\left(X_{S_{0}}, \hat{\varepsilon}\right), \operatorname{corr}\left(X_{S_{0}}^{2}, \hat{\varepsilon}\right)\right\}
$$

FGMM fit using $E X_{S_{0}} \varepsilon=0, E X_{S_{0}}^{2} \varepsilon=0.5$ genes selected.

Comparison of models

	No Fitting	Lasso	FGMM
\# of parameters	1	$23+1$	$5+1$
AIC	-2.289	-2.883	-2.807
BIC	-2.261	-2.216	-2.640
RIC	-2.070	2.324	-1.503

■RIC (penalty $=2 \log p$) (Foster and George, 94) favors even more to the FGMM fit.

Another Example: Prostate center study

Data: 148 microarrays from GEO database and ArrayExpress. Response: expressions of gene DDR1 (encodes receptor tyrosine kinases, related to the prostate cancer)
Covariates: remaining 12,718 genes
(a) Distribution of $\widehat{\operatorname{Corr}}\left(Y, X_{j}\right)$
(b) Distribution of $\widehat{\operatorname{Corr}}\left(X_{j}, \hat{\varepsilon}\right)$

FGMM fit and diagnostics

Fitting: FGMM based on $E X_{S_{0}} \varepsilon=0, E X_{S_{0}}^{2} \varepsilon=0$.
$\operatorname{corr}\left(X_{j}, \hat{\varepsilon}\right), \forall j$
(a) Distribution of residuals and genes

$\left\{\operatorname{corr}\left(X_{S_{0}}, \hat{\varepsilon}\right), \operatorname{corr}\left(X_{S_{0}}^{2}, \hat{\varepsilon}\right)\right\}$
(b) Distribution of residuals and selected genes

Conclusion

\star High dimensionality is a source of endogeneity.
\star Endogeneity results in model selection inconsistency and parameter un-identifiability.

Exog. cond in high-dim is unrealistic and needs validation.

Exogeneity assumption should NOT be made on
"unimnortant variables"

FGMM can deliver model selection consistency under more
realistic and verifiable assumptions.

Conclusion

\star High dimensionality is a source of endogeneity.
\star Endogeneity results in model selection inconsistency and parameter un-identifiability.
\star Exog. cond in high-dim is unrealistic and needs validation.
Exogeneity assumption should NOT be made on
"unimportant variables"

FGMM can deliver model selection consistency under more
realistic and verifiable assumptions.

Conclusion

\star High dimensionality is a source of endogeneity.
\star Endogeneity results in model selection inconsistency and parameter un-identifiability.
\star Exog. cond in high-dim is unrealistic and needs validation.
\star Exogeneity assumption should NOT be made on "unimportant variables".

> FGMM can deliver model selection consistency under more realistic and verifiable assumptions.

Conclusion

\star High dimensionality is a source of endogeneity.
\star Endogeneity results in model selection inconsistency and parameter un-identifiability.
\star Exog. cond in high-dim is unrealistic and needs validation.
\star Exogeneity assumption should NOT be made on "unimportant variables".

Ł FGMM can deliver model selection consistency under more realistic and verifiable assumptions.

The End

FDR Control under Dependency

Jianqing Fan

Princeton University

With Xu Han

May 28, 2014

Outline

- Background
(2) Principal Factor Approximation
- FDP with Unknown Covariance
- Numerical properties

Background

Large-Scale Multiple Testing

\star Biology, Medicine, Genetics, Neuroscience:

- analysis of high throughput data: genes, proteins, copy No.
- genome-wide association studies-SNPs w/ phenotype (e.g. weight, diseases, QTL) or gene expression (eQTL).
- detecting activated voxels after stimulii.

Finance, Economics: Find fund managers who have winning ability (Barras, Scaillet \& Wermers, 10).
\star Network and graphical models: Detecting zero-corr patterns.

Statement of Problems

Problem: Given test statistics $Z_{i} \sim N\left(\mu_{i}, 1\right)$, wish to test

$$
H_{0 i}: \mu_{i}=0 \quad \text { vs } \quad H_{1 i}: \mu_{i} \neq 0, \quad i=1, \cdots, p .
$$

\star large p and sparse μ.

Dependence: $\mathbf{Z} \sim N_{p}(\mu, \Sigma)$,
unknown Σ
Aim 1: \star Consistent estimation of False Discovery Proportion (FDP)
Aim 2: *Improve the power.

Statement of Problems

Problem: Given test statistics $Z_{i} \sim N\left(\mu_{i}, 1\right)$, wish to test

$$
H_{0 i}: \mu_{i}=0 \quad \text { vs } \quad H_{1 i}: \mu_{i} \neq 0, \quad i=1, \cdots, p .
$$

\star large p and sparse μ.

Dependence: $\mathbf{Z} \sim N_{p}(\mu, \Sigma), \quad$ unknown Σ
Aim 1: \star Consistent estimation of False Discovery Proportion (FDP)
Aim 2: \star Improve the power.

Dependent and Independence Tests

Discoveries: $\left\{j:\left|Z_{j}\right|>t\right\}$ for a critical value t. Total $=R(t)$.

False Discoveries: $\mathrm{V}(\mathrm{t})=\#$ of true nulls with $\left|Z_{j}\right|>t$.

Proportion: $\quad \operatorname{FDP}(t)=V(t) / R(t), \quad V(t)$ unobservable r.v.

Indep tests: $\operatorname{FDP}(t) \approx p_{0} G(t) / R(t)$, a.s. $\quad \star G(t)=P\left(\left|Z_{i}\right|>t\right)$.

Dep tests: $\operatorname{FDP}(t)$ varies from data to data. (Owen, 05, Efron, 07, 10 ,
Fan et al, 12)

Dependent and Independence Tests

Discoveries: $\left\{j:\left|Z_{j}\right|>t\right\}$ for a critical value t. Total $=R(t)$.

False Discoveries: $\mathrm{V}(\mathrm{t})=\#$ of true nulls with $\left|Z_{j}\right|>t$.

Proportion: $\quad \operatorname{FDP}(t)=V(t) / R(t), \quad V(t)$ unobservable r.v.

Indep tests: $\operatorname{FDP}(t) \approx p_{0} G(t) / R(t)$, a.s. $\quad \star G(t)=P\left(\left|Z_{i}\right|>t\right)$.

Dep tests: $\operatorname{FDP}(t)$ varies from data to data. (Owen, 05, Efron, 07, 10 ,
Fan et al, 12)

An illustrative example

$\underline{\text { Equi-corr: }} Z_{i}=\mu_{i}+\sqrt{\rho} W+\sqrt{1-\rho} \varepsilon_{i}$,
$W, \varepsilon_{i} \sim_{\text {indep }} N(0,1)$

Number of FD: $V(t)=\sum_{i=1}^{p_{0}} I\left(Z_{i}>t\right)$
(one-sided tests)

Indep: $V(t) \approx p_{0} \Phi(-t)=22.8, \quad$ if $p_{0}=1000, t=2$

Dependence: $\rho=0.64$:

An illustrative example

$\underline{\text { Equi-corr: }} Z_{i}=\mu_{i}+\sqrt{\rho} W+\sqrt{1-\rho} \varepsilon_{i}$,

$$
W, \varepsilon_{i} \sim_{\text {indep }} N(0,1)
$$

Number of FD: $V(t)=\sum_{i=1}^{p_{0}} I\left(Z_{i}>t\right)$

(one-sided tests)

Indep: $V(t) \approx p_{0} \Phi(-t)=22.8$, if $p_{0}=1000, t=2$

Dependence: $\rho=0.64$:

$$
V(t)=\sum_{i \in \text { null }} I\left(0.8 W+0.6 \varepsilon_{i}>t\right) \approx p_{0} \Phi\left(-\frac{t-0.8 W}{0.6}\right)
$$

Equiv-correlation (continued)

Number of False Discoveries:
(1) $W=0 \Longrightarrow V(t) \approx 0.43$

$$
W=1 \Longrightarrow V(t) \approx 22.8
$$

(2) $W=2 \Longrightarrow V(t) \approx 252.5$ $W=3 \Longrightarrow V(t) \approx 747.5$.
\star Depends sensitively on realization of W;
\star Consistently estimable: $M / \bar{\Sigma} / 8+O_{p}(1 / \sqrt{p})$ and

Equiv-correlation (continued)

Number of False Discoveries:
(1) $W=0 \Longrightarrow V(t) \approx 0.43$

$$
\begin{gathered}
W=1 \Longrightarrow V(t) \approx 22.8 \\
W=3 \Longrightarrow V(t) \approx 747.5
\end{gathered}
$$

(2) $W=2 \Longrightarrow V(t) \approx 252.5$
\star Depends sensitively on realization of W;
\star Consistently estimable: $W=\bar{Z} / .8+O_{p}(1 / \sqrt{p})$ and

$$
p_{0} \Phi\left(-\frac{t-0.8 \hat{W}}{0.6}\right) / R(t), \quad \hat{W}=\bar{Z} / .8
$$

Related Literature

\star Weak Dependence: Benjamini \& Hochberg (95), Storey (02), Storey, Taylor \& Siegmund (04); Genovese \& Wasserman (02, 06), vande Laan, 04; Lehmann and Romano, 05; Romano and Wolf (07),

* Applicable to Dependence: Benjamini \& Yekutieli (01), Clarke and Hall (2009), Sun \& Cai (2009), Liu and Shao (12)...
\star Use of Dependence: Efron (07, 10), Leek \& Storey (08), Friguet, Kloareg \& Causeur (09), Schwartzman (10), Fan, Han, and Gu, 12,...

■ Not necessarily a consistent estimate of FDP.

Principal Factor Approximation Known Dependence

Fan, Han and Gu (2012, JASA)

Estimating Principal Factor

Test Statistics: $\mathbf{Z} \sim N(\mu, \Sigma)$,
SVD: $\Sigma=\sum_{i=1}^{p} \lambda_{i} \gamma_{i} \gamma_{i}^{T}=\mathrm{BB}^{\top}+\mathrm{A}$.
$\star \mathbf{B}=\left(\sqrt{\lambda_{1}} \gamma_{1}, \cdots, \sqrt{\lambda_{k}} \gamma_{k}\right)$,
$\operatorname{diag}(\Sigma)=1$.
Σ known.
$\mathbf{A}=$ residual matrix.

Decomposition: $\mathbf{Z}=\mu+\mathbf{B W}+\mathbf{K} \quad \mathbf{W} \sim N\left(0, I_{k}\right)$ and $\mathbf{K} \sim N(0, \mathbf{A})$.

Realized Principal Factors: $\min _{\mu, w}\|\mathbf{Z}-\mu-\mathbf{B W}\|^{2}+\lambda\|\mu\|_{1}$
(same as Huber- ψ) or simply L_{1}-fit: min $_{w}\|\mathbf{Z}-\mathbf{B W}\|_{1}$

Estimating Principal Factor

Test Statistics: $\mathbf{Z} \sim N(\mu, \Sigma)$,
SVD: $\Sigma=\sum_{i=1}^{p} \lambda_{i} \gamma_{i} \gamma_{i}^{\top}=\mathrm{BB}^{\top}+\mathrm{A}$.

$$
\star B=\left(\sqrt{\lambda_{1}} \gamma_{1}, \cdots, \sqrt{\lambda_{k}} \gamma_{k}\right)
$$

Decomposition: $\mathbf{Z}=\mu+\mathbf{B W}+\mathbf{K}$
$\operatorname{diag}(\Sigma)=1$.
Σ known.
$\mathbf{A}=$ residual matrix.
$\mathbf{W} \sim N\left(0, I_{k}\right)$ and $\mathbf{K} \sim N(0, \mathbf{A})$.

Realized Principal Factors: $\min _{\mu, w}\|\mathbf{Z}-\mu-\mathbf{B W}\|^{2}+\lambda\|\mu\|_{1}$
(same as Huber- ψ) or simply L_{1}-fit: $\min _{w}\|\mathbf{Z}-\mathbf{B W}\|_{1}$.

Estimation of FDP

Input: test statistics $\mathbf{Z} \sim N(\mu, \Sigma)$
Available in R
(1) SVD: $\Sigma=\sum_{i=1}^{p} \lambda_{i} \gamma_{i} \gamma_{i}^{T}=\mathrm{BB}^{\top}+\mathbf{A}$
(2) Estimating factors: $\min _{w}\|\mathbf{Z}-\mathrm{BW}\|_{1}$
(3) Estimation of FDP: $\widehat{\operatorname{FDP}}(t)=\frac{\sum_{j=1}^{p} \mathrm{P}\left(\hat{\eta}_{i}, t\right)}{\mathbf{R}(\mathrm{t})}$.

$$
\star P\left(\eta_{i}, t\right)=P_{\text {null }}\left\{\left|Z_{i}\right|>t \mid \mathbf{W}\right\}
$$

Estimation of FDP

Input: test statistics $\mathbf{Z} \sim N(\mu, \Sigma)$
Available in R
(1) SVD: $\Sigma=\sum_{i=1}^{p} \lambda_{i} \gamma_{i} \gamma_{i}^{\top}=\mathrm{BB}^{\top}+\mathrm{A}$
(2) Estimating factors: $\min _{w}\|\mathbf{Z}-\mathrm{BW}\|_{1}$
(3) Estimation of FDP: $\widehat{\operatorname{FDP}}(t)=\frac{\sum_{j=1}^{p} \mathbf{P}\left(\hat{\eta}_{i}, t\right)}{\mathbf{R}(\mathrm{t})}$.

$$
\begin{aligned}
& \star P\left(\eta_{i}, t\right)=P_{n u l l}\left\{\left|Z_{i}\right|>t \mid \mathbf{W}\right\} \\
& \quad=\Phi\left(a_{i}\left(z_{t / 2}+\eta_{i}\right)\right)+\Phi\left(a_{i}\left(z_{t / 2}-\eta_{i}\right)\right) \\
& \\
& \quad \bullet \quad \eta_{\mathbf{i}}=\mathbf{b}_{\mathbf{i}}^{\top} \mathbf{W}, \quad \mathbf{b}_{i}=i^{\text {th }} \text { row of } \mathbf{B} \quad a_{i}=\left(1-\left\|\mathbf{b}_{i}\right\|^{2}\right)^{-1 / 2}
\end{aligned}
$$

Related to Efron (2010)

- Gram-Charlier: $V(t)=\phi(t)-\sum_{j=1}^{\infty}(-1)^{j} \frac{A_{j}!}{j!} \phi^{(j-1)}(t)$
$A_{j} \sim I D\left(0, \alpha_{j}\right)$ with $\alpha_{j}=\sum_{i \neq \prime^{\prime}} \operatorname{cor}\left(Z_{i}, Z_{i}^{\prime}\right)^{j} \quad(S c h w a r t z m a n, 10)$
- Efron takes $j=2$ in computing $E(V(t) \mid A)$.
- Basis function (Hermit polynomial) expansion vs singular value decomposition.
- Different methods in estimating A 's and W's

Consistency and Rate of Convergence

False discoveries: $V(t)=\sum_{i \in \text { true null }} P\left(\eta_{i}, t\right)+o(p)$

Theorem: $\operatorname{FDP}(t)-\operatorname{FDP}_{A}(t)=o_{p}(1)$, $\operatorname{FDP}_{A}(t)=\frac{\sum_{j=1}^{p} P\left(\eta_{i}, t\right)}{R(t)}$, if $p^{-1}\left(\lambda_{k+1}^{2}+\cdots+\lambda_{p}^{2}\right)^{1 / 2} \longrightarrow 0$.

$$
\text { we can take } k=0
$$

independence
■Convergence rate: $o_{p}\left(p^{-\delta / 2}\right)$

Accuracy: $\left|\overline{\operatorname{FDP}}(t)-\operatorname{FDP}_{\mathrm{A}}(t)\right|=O_{p}(\| \hat{W}-W \mid)$

Consistency and Rate of Convergence

False discoveries: $V(t)=\sum_{i \in \text { true null }} P\left(\eta_{i}, t\right)+o(p)$

Theorem: $\operatorname{FDP}(t)-\operatorname{FDP}_{A}(t)=o_{p}(1)$, $\operatorname{FDP}_{A}(t)=\frac{\sum_{j=1}^{p} P\left(\eta_{i}, t\right)}{R(t)}$, if $p^{-1}\left(\lambda_{k+1}^{2}+\cdots+\lambda_{p}^{2}\right)^{1 / 2} \longrightarrow 0$.

■If $\lambda_{\max }=o\left(p^{1 / 2}\right)$, we can take $k=0$
■Convergence rate: $o_{p}\left(p^{-\delta / 2}\right)$

if $p^{-1}\left(\lambda_{k+1}^{2}+\cdots+\lambda_{p}^{2}\right)^{1 / 2}=p^{-\delta}$.

Accuracy: $\left|\widehat{\operatorname{FDP}}(t)-\operatorname{FDP}_{\mathrm{A}}(t)\right|=O_{p}(\|\hat{\mathbf{W}}-\mathbf{W}\|)$.

Estimated vs true FDP (Simulation results)

Equal Correlation

Fan \& Song's Model

Figure: $p=1000, p_{1}=50, n=100, t=2.8$, nonzero $\beta_{i}=1, N_{\text {sim }}=1000$.
\star cross $=$ Efron's approach; $\quad \star$ circle $=$ PFA
\star green $=$ Storey's (2002) estimate $p t / R(t)$

Additional simulation results

Figure: $p=1000, p_{1}=50, n=100, t=2.8$, nonzero $\beta_{i}=1, N_{\text {sim }}=1000$.

Factor adjusted method

Conventional methods: Rank determined by $\left|Z_{i}\right|$, not ideal for dependent data. Note that

$$
Z_{i}-\mathbf{b}_{i}^{T} \mathbf{W} \sim N\left(\mu_{i}, 1-\left\|\mathbf{b}_{i}\right\|^{2}\right)
$$

Factor-adjusted method: Use the new test statistics

$$
Y_{i}=a_{i}\left(Z_{i}-\mathbf{b}_{i}^{T} \widehat{W}\right) \sim N\left(a_{i} \mu_{i}, 1\right)
$$

\square Increase signal-noise ratio $\quad a_{i}=\left(1-\left\|\mathbf{b}_{i}\right\|^{2}\right)^{-1 / 2} \geq 1$

- Rank determined by $\left|V_{i}\right|$, NOT $\left|Z_{i}\right|$

Factor adjusted method

Conventional methods: Rank determined by $\left|Z_{i}\right|$, not ideal for dependent data. Note that

$$
Z_{i}-\mathbf{b}_{i}^{T} \mathbf{W} \sim N\left(\mu_{i}, 1-\left\|\mathbf{b}_{i}\right\|^{2}\right)
$$

Factor-adjusted method: Use the new test statistics

$$
Y_{i}=a_{i}\left(Z_{i}-\mathbf{b}_{i}^{T} \widehat{w}\right) \sim N\left(a_{i} \mu_{i}, 1\right)
$$

- Increase signal-noise ratio

$$
a_{i}=\left(1-\left\|\mathbf{b}_{i}\right\|^{2}\right)^{-1 / 2} \geq 1
$$

\square Rank determined by $\left|Y_{i}\right|$, NOT $\left|Z_{i}\right|$.

FDP with Unknown Dependence

Two Questions

What accuracy of $\hat{\Sigma}$ needed for the plug-in method to work?

- What structures of Σ lead to such an accuracy?

Aim: Investigate the required eigen properties.

Two Questions

What accuracy of $\hat{\Sigma}$ needed for the plug-in method to work?

- What structures of Σ lead to such an accuracy?

Aim: Investigate the required eigen properties.

Estimate $\operatorname{FDP}(t)$ under Unknown Dependence

(0) Estimating Σ : Obtain an estimate $\hat{\Sigma}$.
(1) SVD: $\hat{\Sigma}=\widehat{\mathbf{B}} \widehat{\mathbf{B}}^{T}+\widehat{\mathbf{A}}$.

Recall $\mathbf{Z}=\mu+\mathbf{B W}+K$. Run OLS ignore μ
(2) Estimate factor: $\hat{\mathbf{W}}=\left(\widehat{\mathbf{B}}^{\prime} \widehat{\mathbf{B}}\right)^{-1} \widehat{\mathbf{B}}^{\prime} \mathbf{Z}=\operatorname{diag}\left(\hat{\lambda}_{1}, \cdots, \hat{\lambda}_{k}\right)^{-1} \widehat{\mathbf{B}}^{\prime} \mathbf{Z}$.
(c) Estimated FDP: Compute

Estimate $\operatorname{FDP}(t)$ under Unknown Dependence

(0) Estimating Σ : Obtain an estimate $\hat{\Sigma}$.
(1) SVD: $\hat{\Sigma}=\widehat{\mathbf{B}} \widehat{\mathbf{B}}^{T}+\widehat{\mathbf{A}}$.

Recall $\mathbf{Z}=\mu+\mathbf{B W}+K$. Run OLS ignore μ
(2) Estimate factor: $\hat{\mathbf{W}}=\left(\widehat{\mathbf{B}}^{\prime} \widehat{\mathbf{B}}\right)^{-1} \widehat{\mathbf{B}}^{\prime} \mathbf{Z}=\operatorname{diag}\left(\hat{\lambda}_{1}, \cdots, \hat{\boldsymbol{\lambda}}_{k}\right)^{-1} \widehat{\mathbf{B}}^{\prime} \mathbf{Z}$.
(3) Estimated FDP: Compute

$$
\widehat{\operatorname{FDP}}_{\mathrm{U}}(t)=\sum_{i=1}^{p}\left[\Phi\left(\widehat{\mathrm{a}}_{i}\left(z_{t / 2}+\widehat{\eta}_{i}\right)\right)+\Phi\left(\widehat{\mathrm{a}}_{i}\left(z_{t / 2}-\widehat{\eta}_{i}\right)\right)\right] / R(t)
$$

with $\widehat{\mathbf{a}}_{i}=\left(1-\left\|\widehat{\mathbf{b}}_{i}\right\|^{2}\right)^{-1 / 2}$ and $\widehat{\eta}_{i}=\widehat{\mathbf{b}}_{i}^{T} \widehat{\mathbf{w}}$.

Accuracy of $\operatorname{FDP}(t)$ Estimation

Theorem 1: Under Conditions C1-C4, we have

$$
\left|\widehat{\operatorname{FDP}}_{\mathrm{U}}(t)-\mathrm{FDP}_{\mathrm{A}}(t)\right|=O_{p}\left(p^{-\delta}+k p^{-\kappa}+k\|\mu\|_{2} p^{-1 / 2}\right)
$$

Accuracy of $\operatorname{FDP}(t)$ Estimation

Theorem 1: Under Conditions C1-C4, we have

$$
\left|\widehat{\mathrm{FDP}}_{\mathrm{U}}(t)-\mathrm{FDP}_{\mathrm{A}}(t)\right|=O_{p}\left(p^{-\delta}+k p^{-\kappa}+k\|\mu\|_{2} p^{-1 / 2}\right)
$$

(C1) $R(t) / p>H$ for some $H>0$ as $p \rightarrow \infty$.
(C2) $\max _{i \leq k}\left\|\widehat{\gamma}_{i}-\gamma_{i}\right\|=O_{p}\left(p^{-\kappa}\right)$ for some $\kappa>0$.
(C3) $\sum_{i=1}^{k}\left|\widehat{\lambda}_{i}-\lambda_{i}\right|=o_{p}\left(p^{1-\delta}\right)$.

$$
■ \sum_{i=1}^{k}\left|\widehat{\lambda}_{i}-\lambda_{i}\right|=\sum_{i=1}^{k} \lambda_{i}\left|\hat{\lambda}_{i} / \lambda_{i}-1\right| \leq p \max _{i \leq k}\left|\hat{\lambda}_{\mathbf{i}} / \lambda_{\mathbf{i}}-1\right|
$$

Case I: Sparse Covariance Matrix

Conditions (C2) and (C3) hold if $\|\widehat{\Sigma}-\Sigma\|=O_{p}\left(p^{-\kappa}\right)$ and
$\lambda_{i}-\lambda_{i+1} \geq d>0$ for $i \leq k$. (Weyl theorem \& Davis and Kahan theorem)
\star Operator norm consistency is generally obtained under sparse structures (Bickel and Levina, 08; Lam and Fan, 09; Cai and Liu, 11).
\star No operator norm consistency for strong dependence (e.g. factor model).

Case II: Approximate Factor Model

Model: $\mathbf{y}_{i}=\mu+\mathbf{B f}_{i}+\mathbf{u}_{i}, \quad i=1, \cdots, n, \quad \Sigma_{u}$ sparse.
(1) Run singular value decomposition: $\mathbf{S}_{n}=\sum_{j=1}^{p} \hat{\lambda}_{j} \hat{\xi}_{j} \hat{\xi}_{j}{ }^{\top}$.
(2) Compute $\hat{\mathbf{R}}=\sum_{j=k+1}^{p} \hat{\lambda}_{j} \hat{\xi}_{j} \hat{\xi}_{j}{ }^{\top}$.
(3) Apply (adaptive) thresholding:

(9) Compute $\hat{\Sigma}=\sum_{j=1}^{k} \hat{\lambda}_{j} \hat{\xi}_{j} \hat{\xi}_{j}+\widehat{\mathbf{R}}^{\mathcal{T}}$. (POET, Fan, Liao, Mincheva, 13)

Choice of k : Smallest k such that $\lambda_{k}>\varepsilon / \sqrt{p}$

Case II: Approximate Factor Model

Model: $\mathbf{y}_{i}=\mu+\mathbf{B f}_{i}+\mathbf{u}_{i}, \quad i=1, \cdots, n, \quad \Sigma_{u}$ sparse.
(1) Run singular value decomposition: $\mathbf{S}_{n}=\sum_{j=1}^{p} \hat{\lambda}_{j} \hat{\xi}_{j} \hat{\xi}_{j}{ }^{T}$.
(2) Compute $\hat{\mathbf{R}}=\sum_{j=k+1}^{p} \hat{\lambda}_{j} \hat{\xi}_{j} \hat{\xi}_{j}^{\top}$.
(3) Apply (adaptive) thresholding:

$$
\widehat{\mathbf{R}}^{\mathcal{T}}=\left(\hat{r}_{i j}^{\mathcal{T}}\right), \quad \hat{r}_{i j}^{\mathcal{T}}=\hat{r}_{i j} /\left(\left|\hat{r}_{i j}\right| \geq \tau_{i j}\right)
$$

(9) Compute $\hat{\Sigma}=\sum_{j=1}^{k} \hat{\lambda}_{j} \hat{\xi}_{j} \hat{\xi}_{j}^{T}+\widehat{\mathbf{R}}^{\mathcal{T}}$. (POET, Fan, Liao, Mincheva, 13)

Choice of \mathbf{k} : Smallest k such that $\lambda_{k}>\varepsilon / \sqrt{p}$

Strong Dependence

Theorem 3: For approximate factor model, we have

$$
\left|\widehat{\operatorname{FDP}}_{\mathrm{POET}}(t)-\operatorname{FDP}_{\mathrm{A}}(t)\right|=O_{p}\left(\delta_{n}\right)+O\left(k\|\mu\|_{2} p^{-1 / 2}\right)
$$

where $\delta_{n}=\sqrt{\frac{\log p}{n}}+\frac{1}{\sqrt{p}}+\sqrt{\frac{m_{p}}{p}}+\frac{p_{1}}{p}$, when k is finite.

■POET is accuracy enough for FPA.
■Obtained by an application of Fan, Liao and Mincheva (2013).

Strong Dependence

Theorem 3: For approximate factor model, we have

$$
\left|\widehat{\operatorname{FDP}}_{\mathrm{POET}}(t)-\operatorname{FDP}_{\mathrm{A}}(t)\right|=O_{p}\left(\delta_{n}\right)+O\left(k\|\mu\|_{2} p^{-1 / 2}\right)
$$

where $\delta_{n}=\sqrt{\frac{\log p}{n}}+\frac{1}{\sqrt{p}}+\sqrt{\frac{m_{p}}{p}}+\frac{p_{1}}{p}$, when k is finite.
\square POET is accuracy enough for FPA.
■Obtained by an application of Fan, Liao and Mincheva (2013).

Simulation Studies

Simulation Setup

- Model: $\mathbf{y}_{i}=\mu+\mathbf{B f}_{i}+\mathbf{u}_{i}$ for $i=1, \cdots, n$.
- Components: $\mathbf{f}_{i} \sim N_{3}\left(0, \mathbf{I}_{3}\right), \mathbf{u}_{i} \sim N_{p}\left(0, \mathbf{I}_{p}\right)$, $\left\{\mathbf{u}_{i}\right\}_{t \geq 1}$ and $\left\{\mathbf{f}_{i}\right\}_{t \geq 1}$ indep.
- Loadings: $\mathbf{B}_{i j} \sim$ i.i.d. $U(-1,1)$, then fixed.
- Parameters: $p=1000, n=500, p_{1}=50, t=2.576$, nonzero $\mu_{i}=1$ and $N_{\text {sim }}=200$.
- Purposes: Compare $\widehat{\operatorname{FDP}}_{\mathrm{A}}(t)$ vs $\widehat{\mathrm{FDP}}_{\mathrm{POET}}(t)$.

Estimating FDP: $\widehat{\operatorname{FDP}}_{\mathbf{A}}(t)$ vs $\widehat{\operatorname{FDP}}_{\mathrm{POET}}(t)$

Figure: $\widehat{\operatorname{FDP}}_{\mathrm{A}}(t)$ is based on known $\Sigma, p=1000, n=500, p_{1}=50, t=2.576$, $k=3$, nonzero $\mu_{i}=1$ and $N_{\text {sim }}=200 . \mathrm{RE}=(\widehat{\operatorname{FDP}}(t)-\operatorname{FDP}(t)) / \operatorname{FDP}(t)$.

Estimating FDP: LAD vs LS vs SCAD

Figure: LAD $\left(L_{1}\right)$, LS $\left(L_{2}\right)$, SCAD (penalized $\left.L_{2}\right)$

Accuracy of Estimating FDP

Table: Relative error between true $\operatorname{FDP}(t)$ and the estimators $\widehat{\operatorname{FDP}}_{\mathrm{A}}(t)$ and $\widehat{\operatorname{FDP}}_{\text {POET }}(t)$ obtained by LAD, LS and SCAD.

	mean $\left(\mathrm{RE}_{\mathrm{A}}\right)$	$\mathrm{SD}\left(\mathrm{RE}_{\mathrm{A}}\right)$	mean $\left(\mathrm{RE}_{\mathrm{P}}\right)$	$\mathrm{SD}\left(\mathrm{RE} \mathrm{E}_{\mathrm{P}}\right)$
LAD	0.1818	0.5810	0.1583	0.5797
LS	0.1645	0.5398	0.1444	0.5413
SCAD	$\mathbf{0 . 0 7 0 0}$	0.5306	$\mathbf{0 . 0 4 3 1}$	0.5223

$\square \mathrm{RE}_{\mathrm{A}}$ and RE_{P} are the relative errors of $\widehat{\mathrm{FDP}}_{\mathrm{A}}(t)$ and $\widehat{\mathrm{FDP}}_{\text {POET }}(t)$.

Estimating FDP: Nonnormality

Figure: The non-normal distribution is i.i.d. standardized Student $-t$ with $\mathrm{DoE}=5$. $\bar{\equiv}$

Accuracy of Estimating FDP

Table: Relative error between true $\operatorname{FDP}(t)$ and the estimators $\widehat{\operatorname{FDP}}_{\mathrm{A}}(t)$ and $\widehat{\operatorname{FDP}}_{\text {POET }}(t)$ under nonnormality.

	mean $\left(\mathrm{RE}_{\mathrm{A}}\right)$	$\mathrm{SD}\left(\mathrm{RE}_{\mathrm{A}}\right)$	mean(RE $\left.\mathrm{RE}_{\mathrm{P}}\right)$	$\mathrm{SD}\left(\mathrm{RE} \mathrm{E}_{\mathrm{P}}\right)$
$N-\mathbf{f}+N-\mathbf{u}$	0.1708	0.6364	0.1660	0.6414
$N-\mathbf{f}+t-\mathbf{u}$	0.1146	0.5867	0.0908	0.5705
$t-\mathbf{f}+t-\mathbf{u}$	0.1637	0.6376	0.1388	0.6549

$\square \mathrm{RE}_{\mathrm{A}}$ and RE_{P} are the relative errors of $\widehat{\mathrm{FDP}}_{\mathrm{A}}(t)$ and $\widehat{\mathrm{FDP}}_{\text {POET }}(t)$.

Real Data Analysis

Breast Cancer Study (Hedenfalk et al., 2001)

\star Two genetic mutations known to increase breast cancer risk: BRCA1 \& BRCA2.
$\star n=7$ BRCA1 women, $\mathbf{X}_{1}, \cdots, \mathbf{X}_{n} \sim N_{p}\left(\mu^{X}, \Sigma\right)$;

$$
m=8 \text { BRCA2 women, } \mathbf{Y}_{1}, \cdots, \mathbf{Y}_{m} \sim N_{p}\left(\mu^{Y}, \Sigma\right)
$$

\star Microarray of expression levels on $p=3226$ genes.
Two sample comparison: BRCA1 \equiv BRCA2?
Test statistics: $\mathbf{Z}=\sqrt{n m /(n+m)}(\overline{\mathbf{X}}-\overline{\mathbf{Y}}) \sim N_{p}(\mu, \Sigma)$, with

$$
\mu=\sqrt{n m /(n+m)}\left(\mu^{X}-\mu^{Y}\right) .
$$

Multiple hypothesis test:

$$
H_{0 j}: \mu_{j}=0 \quad \text { vs } \quad H_{1 j}: \mu_{j} \neq 0 \quad j=1, \cdots, p .
$$

Gene Expression Heatmap: BRCA1 vs BRCA2

Figure: Red color means overexpression, while green color means underexpression.

$R(t), \widehat{v}(t)$ and $\widehat{\operatorname{FDP}}_{\text {POET }}(t)$

Figure: $\widehat{\operatorname{FDP}}_{\mathrm{POET}}(t)$ and $\widehat{V}(t)$ as functions of $R(t)$ for $p=3226$ genes $=$

Summary

\star Derive asymptotic expression for FDP under arbitrary dependence;
\star Propose PFA to consistently estimate FDP when Σ unknown;

Establish asymptotic theory for the method;

* Improve power properties by factor-adjustment;
* Evaluate finite sample performance by extensive simulation
studies.

Summary

\star Derive asymptotic expression for FDP under arbitrary dependence;
\star Propose PFA to consistently estimate FDP when Σ unknown;
\star Establish asymptotic theory for the method;
\star Improve power properties by factor-adjustment;
\star Evaluate finite sample performance by extensive simulation studies.

Acknowledgement

Robust Sparse Quadratic Discriminantion

Jianqing Fan

May 26, 2014

Outline

(1) Introduction
(2) Rayleigh Quotient for sparse QDA
(3) Optimization Algorithm
(4) Application to Classification
(5) Theoretical Results
(6) Numerical Studies

Introduction

High Dimensional Classification

High-dimensional Classification

■pervades all facets of machine learning and Big Data

- Biomedicine: disease classification / predicting clinical outcomes / biological process using microarray or proteomics data.

- Machine learning: Document/text classification, image classification
- Social Networks: Community detection

Classification

Training data: $\left\{\mathbf{X}_{i 1}\right\}_{i=1}^{n_{1}}$ and $\left\{\mathbf{X}_{i 2}\right\}_{i=1}^{n_{2}}$ for classes 1 and 2.

Aim: Classify a new data \mathbf{X} by $I\{f(\mathbf{X})<c\}+1$
Family of functions f : linear, quadratic
Criterion for selecting f : logistic, hinge

Convex surrogate

A popular approach

Sparse linear classifiers: Minimize classification errors (Bickel\&
Levina, 04, Fan \& Fan, 08; Shao et al. 11; Cai \& Liu, 11; Fan, et al, 12).
\star Works well with Gaussian data with equal variance.
\star Powerless if centroids are the same; no interaction considered

Heteroscadestic variance? Non-Gaussian distributions?

Other popular approaches

- Plug-in quadratic discriminant.
\star needs $\boldsymbol{\Sigma}_{1}^{-1}, \boldsymbol{\Sigma}_{2}^{-1} ; \star$ Gaussianity.
- Kernel SVM, logistic regression.
\star inadequate use of dist.; \star few results; \star interactions
- Minimizing classification error:
\star non-convex; not easily computable.

What new today?

(1) Find a quadratic rule that max. Rayleigh Quotient.
(2) Non-equal covariance matrices;
(3) Fourth cross-moments avoided using elliptical distributions
(4) Uniform estimation of means and variance for heavy-tails.

Rayleigh Quotient Optimization

Rayleigh Quotient

$$
\operatorname{Rq}(f)=\frac{\text { between-class-var }}{\text { within-class-var }} \propto \frac{\left[\mathbb{E}_{1} f(\mathbf{X})-\mathbb{E}_{2} f(\mathbf{X})\right]^{2}}{\pi \operatorname{var}_{1}[f(\mathbf{X})]+(1-\pi) \operatorname{var}_{2}[f(\mathbf{X})]}
$$

■ In the "classical" setting, $\operatorname{Rq}(f)$ is equiv. to $\operatorname{Err}(f)$

- In "broader" setting, it is a surrogate of classification error.
- Of independent scientific interest.

Rayleigh quotient for quadratic loss

Quadratic projection: $Q_{\Omega, \delta}(\mathbf{X})=\mathbf{X}^{\top} \Omega \mathbf{X}-2 \delta^{\top} \mathbf{X}$.
With $\pi=\mathbb{P}(Y=1)$ and $\kappa=\frac{1-\pi}{\pi}$, we have

$$
\operatorname{Rq}(Q) \propto \frac{[\mathrm{D}(\Omega, \delta)]^{2}}{\mathrm{~V}_{1}(\Omega, \delta)+\mathrm{k} \mathrm{~V}_{2}(\Omega, \delta)}=\mathrm{R}(\Omega, \delta),
$$

- $D(\Omega, \delta)=\mathbb{E}_{1} Q(\mathbf{X})-\mathbb{E}_{2} Q(\mathbf{X})$.
- $V_{k}(\Omega, \delta)=\operatorname{var}_{k}(Q(\mathbf{X})), k=1,2$.
- Reduce to ROAD (Fan, Feng, Tong, 12) when linear.

Challenge and Solution

Challenge: involve all fourth cross moments.
Solution: Consider the elliptical family.

$$
\mathbf{X}=\mu+\xi \boldsymbol{\Sigma}^{1 / 2} \mathbf{U}, \quad E \xi^{2}=d, \quad \mathbf{X} \sim \mathcal{E}(\mu, \boldsymbol{\Sigma}, g)
$$

Variance of Quadratic Form

$$
\begin{aligned}
\operatorname{var}(Q(\mathbf{X})) & =2(1+\gamma) \operatorname{tr}(\boldsymbol{\Omega} \boldsymbol{\Sigma} \boldsymbol{\Omega})+\gamma[\operatorname{tr}(\boldsymbol{\Omega} \boldsymbol{\Sigma})]^{2} \\
& +4(\Omega \mu-\delta)^{\top} \boldsymbol{\Sigma}(\Omega \mu-\delta), \quad \text { quadratic in } \Omega, \delta,
\end{aligned}
$$

where $\gamma=\frac{E\left(\xi^{4}\right)}{d(d+2)}-1$ is the kurtosis parameter.

Rayleigh Quotient under elliptical family

Semiparametric model: Two classes: $\mathcal{E}\left(\mu_{1}, \boldsymbol{\Sigma}_{1}, g\right)$ and $\mathcal{E}\left(\mu_{2}, \boldsymbol{\Sigma}_{2}, g\right)$.

Examples of γ :

	Gaussian	t_{v}	Contaminated Gaussian (ω, τ)	Compound Gaussian $U(1,2)$
γ	0	$\frac{2}{v-2}$	$\frac{1+\omega\left(\tau^{4}-1\right)}{\left(1+\omega\left(\tau^{2}-1\right)\right)^{2}}-1$	$\frac{1}{6}$

Sparse quadratic solution

Simplification: Using homogeneity,

$$
\underset{\Omega, \delta}{\operatorname{argmax}} \frac{[D(\Omega, \delta)]^{2}}{V_{1}(\Omega, \delta)+\kappa V_{2}(\Omega, \delta)} \propto \underset{D(\Omega, \delta)=1}{\operatorname{argmin}} \underbrace{V_{1}(\Omega, \delta)+\kappa V_{2}(\Omega, \delta)}_{V(\Omega, \delta)}
$$

$$
\begin{aligned}
& \text { Sparsified version: } \Omega \in \mathbb{R}^{d \times d}, \delta \in \mathbb{R}^{d} \\
& \quad \begin{array}{l}
\operatorname{argmin} \\
(\Omega, \delta): D(\Omega, \delta)=1
\end{array} V(\Omega, \delta)+\lambda_{1}|\Omega|_{1}+\lambda_{2}|\delta|_{1} .
\end{aligned}
$$

\square Applicable to linear discriminant \Longrightarrow ROAD

Robust Estimation and

Optimization Algorithm

Robust Estimation of Mean

Problems: Elliptical distributions can have heavy tails.

Challenges: \star Sample median $\not \approx$ mean when skew (e.g. $E X^{2}$) \star Need uniform conv. for exponentially many $\sigma_{i i}^{2}$.

$$
\begin{aligned}
& \text { How to estimate mean with } \\
& \text { exponential concentration for heavy tails? }
\end{aligned}
$$

Robust Estimation of Mean

Problems: Elliptical distributions can have heavy tails.

Challenges: \star Sample median $\not \approx$ mean when skew (e.g. $E X^{2}$) \star Need uniform conv. for exponentially many $\sigma_{i i}^{2}$.

How to estimate mean with exponential concentration for heavy tails?

Catoni's M-estimator $\widehat{\mu}$

$$
\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~h}\left(\alpha_{\mathrm{n}, \mathrm{~d}}\left(\mathrm{x}_{\mathrm{ij}}-\widehat{\mu}_{\mathrm{j}}\right)\right)=0, \quad \alpha_{n, d} \rightarrow 0
$$

(1) h strictly increasing: $\log \left(1-y+y^{2} / 2\right) \leq h(y) \leq \log \left(1+y+y^{2} / 2\right)$.
(2) $\alpha_{n, d}=\left\{\frac{4 \log (n v(d)}{n\left[v+\frac{v \log (\eta) d)}{n-4 \log (n v(d)}\right]}\right\}^{1 / 2}$ with $v \geq \max _{j} \sigma_{j j}^{2}$.

Robust Estimation of $\boldsymbol{\Sigma}_{k}$

(1) $\widehat{\eta}_{j}=\widehat{E X_{j}^{2}}$, Catoni's M-estimator using $\left\{x_{i j}^{2}, \cdots, x_{n j}^{2}\right\}$.
(2) variance estimation: for a small δ_{0},

$$
\widehat{\sigma}_{j}^{2}=\widehat{\Sigma}_{j j}=\max \left\{\widehat{\eta}_{j}-\widehat{\mu}_{j}^{2}, \delta_{0}\right\} .
$$

© Off-diagonal elements:

$$
\widehat{\Sigma}_{j k}=\widehat{\sigma}_{j} \widehat{\sigma}_{k} \underbrace{\sin \left(\pi \widehat{\tau}_{j k} / 2\right)}_{\text {robust corr }}
$$

$\widehat{\tau}_{j k}:$ Kendall's tau correlation (Liu, et al, 12; Zou \& Xue, 12).

Projection into nonnegative matrix

$\square \widehat{\Sigma}$ is indefinite: sup-norm projection:

$$
\widetilde{\Sigma}=\underset{\mathbf{A}>0}{\operatorname{argmin}}\left\{|\mathbf{A}-\widehat{\boldsymbol{\Sigma}}|_{\infty}\right\}, \quad \text { convex optimization }
$$

Property: $|\widetilde{\Sigma}-\boldsymbol{\Sigma}|_{\infty} \leq 2|\widehat{\boldsymbol{\Sigma}}-\boldsymbol{\Sigma}|_{\infty}$.

Robust Estimation of γ

Recall: $\gamma=\frac{1}{d(d+2)} \mathbb{E}\left(\xi^{4}\right)-1$ and

$$
\mathbb{E}\left(\xi^{4}\right)=\mathbb{E}\left\{\left[(\mathbf{X}-\mu)^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\mu)\right]^{2}\right\}
$$

Intuitive estimator: -also estimable for subvectors.

$$
\widehat{\gamma}=\max \left\{\frac{1}{d(d+2)} \frac{1}{n} \sum_{i=1}^{n}\left[\left(\mathbf{X}_{i}-\widetilde{\mu}\right)^{\top} \widetilde{\Omega}\left(\mathbf{X}_{i}-\widetilde{\mu}\right)\right]^{2}-1, \quad 0\right\}
$$

$\star \widetilde{\mu}$ and $\widetilde{\Omega}$ are estimators of μ and $\boldsymbol{\Sigma}^{-1}$ (CLIME, Cai, et al, 11).
Properties: $|\widehat{\gamma}-\gamma| \leq C \max \left\{|\widetilde{\mu}-\mu|_{\infty},\left|\widetilde{\Omega}-\boldsymbol{\Sigma}^{-1}\right|_{\infty}\right\}$.

Linearized Augmented Lagrangian

$\underline{\text { Target: }} \min _{D(\Omega, \delta)=1} V(\Omega, \delta)+\lambda_{1}|\Omega|_{1}+\lambda_{2}|\delta|_{1}$.

■Let $F_{\rho}(\Omega, \delta, v)=\underbrace{V(\Omega, \delta)+v[\mathbf{D}(\Omega, \delta)-1]+\rho[\mathrm{D}(\Omega, \delta)-1]^{2}}_{\text {quadratic in } \Omega \text { and } \delta}$

$$
\Omega^{(1)} \Rightarrow \delta^{(1)} \Rightarrow v^{(1)} \Longrightarrow \Omega^{(2)} \Rightarrow \delta^{(2)} \Rightarrow v^{(2)} \Longrightarrow \cdots
$$

Linearized Augmented Lagrangian: Details

\square Minimize $F_{\rho}(\Omega, \delta, v)+\lambda_{1}|\Omega|_{1}+\lambda_{2}|\delta|_{1}$.

- $\Omega^{(k)}=\operatorname{argmin}_{\Omega}\left\{F_{\rho}\left(\Omega, \delta^{(k-1)}, v^{(k-1)}\right)+\lambda_{1}|\Omega|_{1}\right\}$, (soft-thresh.)
- $\delta^{(k)}=\operatorname{argmin}_{\delta}\left\{F_{\rho}\left(\Omega^{(k)}, \delta, v^{(k-1)}\right)+\lambda_{2}|\delta|_{1}\right\},($ LASSO $)$
- $\mathrm{v}^{(k)}=\mathrm{v}^{(k-1)}+2 \rho\left[D\left(\Omega^{(k)}, \delta^{(k)}\right)-1\right]$.

Application to Classification

Finding a Threshold

Where to Cut???

Finding a Threshold

\star Classification rule: $I\left\{\mathbf{Z}^{\top} \Omega \mathbf{Z}-2 \mathbf{Z}^{\top} \delta<c\right\}+1$.
\star Reparametrization: $c=t M_{1}(\Omega, \delta)+(1-t) M_{2}(\Omega, \delta)$.
\star Minimizing wrt t an approximated classification error:

$$
\overline{\operatorname{Err}}(t) \equiv \pi \bar{\phi}\left(\frac{(1-t) D(\Omega, \delta)}{\sqrt{V_{1}(\Omega, \delta)}}\right)+(1-\pi) \bar{\Phi}\left(\frac{t D(\Omega, \delta)}{\sqrt{V_{2}(\Omega, \delta)}}\right)
$$

Overview of Our Procedure

Find threshold of $c\left(t^{*}\right)$, where t^{*} is found by minimizing $\overline{\operatorname{Err}}(\widehat{\Omega}, \widehat{\delta}, t)$

Quadratic Classification Rule:
$f\left(\widehat{\boldsymbol{\Omega}}, \widehat{\delta}, c\left(t^{*}\right)\right)=I\left(\mathbf{Z}^{\top} \widehat{\boldsymbol{\Omega}} \mathbf{Z}-2 \mathbf{Z}^{\top} \widehat{\delta}<c\left(t^{*}\right)\right)$

Theoretical Results

Oracle Solutions

Oracle solution corresponding to λ_{0} :

$$
\left(\Omega_{\lambda_{0}}^{*}, \delta_{\lambda_{0}}^{*}\right)=\underset{D(\Omega, \delta)=1}{\operatorname{argmin}}\left\{V(\Omega, \delta)+\lambda_{0}|\Omega|_{1}+\lambda_{0}|\delta|_{1}\right\} .
$$

Special case w/ $\lambda_{0}=0: \quad\left(\Omega_{0}^{*}, \delta_{0}^{*}\right)=\operatorname{argmin}_{D(\Omega, \delta)=1} V(\Omega, \delta)$.

Estimates from Quadro:

$$
(\widehat{\Omega}, \widehat{\delta})=\underset{\widehat{D}(\Omega, \delta)=1}{\operatorname{argmin}}\left\{\widehat{V}(\Omega, \delta)+\lambda|\Omega|_{1}+\lambda|\delta|_{1}\right\}
$$

Executive Summary

Challenges: Constraints involve estimators, not unbiased.
© Oracle performance in terms of Raleigh Quotient under RE.
(2) Its generalization allows flexibility of sparsity.

- $\overline{\operatorname{Err}}(t)$ provides a valid approximation.
- Raleight Quotient provides a good surrogate for classification error.

Restricted Eigenvalue

But target is quadratic in Ω and δ.

$$
\mathbf{Q}_{k}=\left[\begin{array}{cc}
\left(2(1+\gamma) \boldsymbol{\Sigma}_{k}+4 \mu_{k} \mu_{k}^{\top}\right) \otimes \boldsymbol{\Sigma}_{k}+\gamma \operatorname{vec}\left(\boldsymbol{\Sigma}_{k}\right) \operatorname{vec}\left(\boldsymbol{\Sigma}_{k}\right)^{\top} & -4 \mu_{k} \otimes \boldsymbol{\Sigma}_{k} \\
-4 \mu_{k}^{\top} \otimes \boldsymbol{\Sigma}_{k} & 4
\end{array}\right]
$$

$$
\Theta(S ; \bar{c})=\min _{\mathbf{v}:\left|\mathbf{v}_{S^{c} \mid} \leq \bar{c}\right| \mathbf{v}_{S \mid 1} \mid} \frac{\mathbf{v}^{\top} \mathbf{Q} \mathbf{v}}{\left|\mathbf{v}_{S}\right|^{2}}
$$

(Bickel et al, 09; van de Geer, 07; Candes and Tao, 05)

Oracle Inequality on Rayleigh Quotient

Oracle Inequality on Rayleigh Quotient

With $\lambda=C \eta \max \left\{s_{0}^{1 / 2} \Delta_{n}, k_{0}^{1 / 2} \lambda_{0}\right\}\left[R\left(\Omega_{\lambda_{0}}^{*}, \delta_{\lambda_{0}}^{*}\right)\right]^{-1 / 2}$,

$$
\frac{R(\widehat{\Omega}, \widehat{\delta})}{R\left(\Omega_{\lambda_{0}}^{*}, \delta_{\lambda_{0}}^{*}\right)} \geq 1-A \eta^{2} \max \left\{s_{0} \Delta_{n}, s_{0}^{1 / 2} k_{0}^{1 / 2} \lambda_{0}\right\}
$$

Estimation error: $\Delta_{n}=\max _{k=1,2}\left\{\left|\widehat{\boldsymbol{\Sigma}}_{k}-\boldsymbol{\Sigma}_{k}\right|_{\infty},\left|\widehat{\mu}_{k}-\mu_{k}\right|_{\infty}\right\}$. Sparsity: $S=\operatorname{supp}\left[\operatorname{vec}\left(\Omega_{\lambda_{0}}^{*}\right)^{\top},\left(\delta_{\lambda_{0}}^{*}\right)^{\top}\right]^{\top}, s_{0}=|S|$ and $k_{0}=\max \left\{s_{0}, \mathrm{R}\left(\Omega_{\lambda_{0}}^{*}, \delta_{\lambda_{0}}^{*}\right)\right\}$ - For some $a_{0}, c_{0}, u_{0}>0, \Theta(S, 0) \geq c_{0}, \Theta(S, 3) \geq a_{0}$, and $R\left(\Omega_{\lambda_{0}}^{*}, \delta_{\lambda_{0}}^{*}\right) \geq u_{0}$ - $\max \left\{s_{0} \Delta_{n}, s_{0}^{1 / 2} k_{0}^{1 / 2} \lambda_{0}\right\}<1, \quad 4 s_{0} \Delta_{n}^{2}<a_{0} c_{0}$

Oracle Inequality on Rayleigh Quotient

Oracle Inequality on Rayleigh Quotient

With $\lambda=C \eta \max \left\{s_{0}^{1 / 2} \Delta_{n}, k_{0}^{1 / 2} \lambda_{0}\right\}\left[R\left(\Omega_{\lambda_{0}}^{*}, \delta_{\lambda_{0}}^{*}\right)\right]^{-1 / 2}$,

$$
\frac{R(\widehat{\Omega}, \widehat{\delta})}{R\left(\Omega_{\lambda_{0}}^{*}, \delta_{\lambda_{0}}^{*}\right)} \geq 1-A \eta^{2} \max \left\{s_{0} \Delta_{n}, s_{0}^{1 / 2} k_{0}^{1 / 2} \lambda_{0}\right\}
$$

Estimation error: $\Delta_{n}=\max _{k=1,2}\left\{\left|\widehat{\boldsymbol{\Sigma}}_{k}-\boldsymbol{\Sigma}_{k}\right|_{\infty},\left|\widehat{\mu}_{k}-\mu_{k}\right|_{\infty}\right\}$. Sparsity: $S=\operatorname{supp}\left[\operatorname{vec}\left(\Omega_{\lambda_{0}}^{*}\right)^{\top},\left(\delta_{\lambda_{0}}^{*}\right)^{\top}\right]^{\top}, s_{0}=|S|$ and $k_{0}=\max \left\{s_{0}, \mathrm{R}\left(\Omega_{\lambda_{0}}^{*}, \delta_{\lambda_{0}}^{*}\right)\right\}$.

- For some $a_{0}, c_{0}, u_{0}>0, \Theta(S, 0) \geq c_{0}, \Theta(S, 3) \geq a_{0}$, and $R\left(\Omega_{\lambda_{0}}^{*}, \delta_{\lambda_{0}}^{*}\right) \geq u_{0}$.
- $\max \left\{s_{0} \Delta_{n}, s_{0}^{1 / 2} k_{0}^{1 / 2} \lambda_{0}\right\}<1, \quad 4 s_{0} \Delta_{n}^{2}<a_{0} c_{0}$.

Oracle Inequality: Corollaries

Corrolary $2\left(\lambda_{0}=0\right)$: With our robust est, when

$$
\lambda>C s_{0}^{1 / 2} R_{\max }^{-1 / 2} \sqrt{\log (d) / n},
$$

with prob $\geq 1-(n \vee d)^{-1}$,
$R(\widehat{\Omega}, \widehat{\delta}) \geq\left(1-A s_{0} \sqrt{\log (d) / n}\right) R_{\max }$,
$\star R_{\text {max }}=\mathrm{R}\left(\Omega_{0}^{*}, \delta_{0}^{*}\right)$,

Approximate of Classification Error

Under normality \& mild conditions, as $d \rightarrow \infty$,

$$
|\operatorname{Err}(\Omega, \delta, t)-\overline{\operatorname{Err}}(\Omega, \delta, t)|=\frac{\operatorname{rank}(\Omega)+\mathbf{o}(\mathbf{d})}{\left[\min \left\{\mathbf{V}_{1}(\Omega, \delta), \mathbf{V}_{2}(\Omega, \delta)\right\}\right]^{3 / 2}}
$$

\star If $\operatorname{var}_{k}(Q(\mathbf{X}))>c_{0} d^{\theta}$ for $\theta>2 / 3$, then $|\operatorname{Err}-\overline{\operatorname{Err}}|=o(1)$.
$\star t^{*}=\operatorname{argmin} \overline{\operatorname{Err}}(\Omega, \delta, t)$ is reasonable.

Rayleigh Quotient versus $\overline{\operatorname{Err}}(\Omega, \delta, t)$: Notation

- $H(x)=\bar{\Phi}(1 / \sqrt{x})$, where $\bar{\Phi}=1-\Phi$.
- $R^{(t)}=R(\Omega, \delta) \mathrm{w} /$ weight $\kappa(t) \equiv \frac{1-\pi}{\pi} \frac{(1-t)^{2}}{t^{2}}$.
- $R_{k}=R_{k}(\Omega, \delta)=[D(\Omega, \delta)]^{2} / V_{k}(\Omega, \delta)$, for $k=1,2$.
- $U_{1}=U_{1}(\Omega, \delta, t)=\min \left\{(1-t)^{2} R_{1}, \frac{1}{(1-t)^{2} R_{1}}\right\}$.
- $U_{2}=U_{2}(\Omega, \delta, t)=\min \left\{t^{2} R_{2}, \frac{1}{t^{2} R_{2}}\right\}$.
- $U=U(\Omega, \delta, t)=\max \left\{U_{1} / U_{2}, U_{2} / U_{1}\right\}$.
- $R_{0}=\max \left\{\min \left\{R_{1}, 1 / R_{1}\right\}, \min \left\{R_{2}, 1 / R_{2}\right\}\right\} \& \Delta R=\left|R_{1}-R_{2}\right|$.

Rayleigh Quotient versus $\overline{\operatorname{Err}}(\Omega, \delta, t)$

Distance between $\overline{\operatorname{Err}}(\Omega, \delta, t)$ and monotone transform of $\mathrm{R}(\Omega, \delta)$

There exists a constant $C>0$ such that

$$
\left|\overline{\operatorname{Err}}(\Omega, \delta, t)-H\left(\frac{\pi}{(1-t)^{2} R^{(t)}(\Omega, \delta)}\right)\right| \leq C\left[\max \left\{U_{1}, U_{2}\right\}\right]^{1 / 2} \cdot|U-1|^{2}
$$

In particular, when $t=1 / 2$,

$$
\left|\overline{\operatorname{Err}}(\Omega, \delta, t)-H\left(\frac{4 \pi}{R^{(t)}(\Omega, \delta)}\right)\right| \leq C R_{0}^{1 / 2} \cdot\left(\frac{\Delta R}{R_{0}}\right)^{2}
$$

\star Remarks:

- $\left|V_{1}-V_{2}\right| \ll \min \left\{V_{1}, V_{2}\right\}$, then $\Delta R \ll R_{0}$.
- $R_{0} \leq 1$ always. $R_{0} \rightarrow 0$ when $R_{1}, R_{2} \rightarrow \infty$, or $R_{1}, R_{2} \rightarrow 0$, or $R_{1} \rightarrow 0, R_{2} \rightarrow \infty$.
- Under mild conditions, a monotone transform of $\mathrm{R}(\Omega, \delta)$ approximates $\overline{\mathrm{Err}}$, and hence approximates the true error $\operatorname{Err}(\Omega, \delta)$.

Numerical Studies

Simulation Setup

- $d=40, n_{1}=n_{2}=50$, testing: $N_{1}=N_{2}=4000$.
- Repeat 100 times.
- Augmented Lagrangian parameters:

$$
\rho=0.5, v^{0}=0, \delta^{0}=\mathbf{0}
$$

- $\left(\lambda_{1}, \lambda_{2}\right)$ are chosen by optimal tuning.

Simulation: Gaussian Settings $\left(\mu_{1}=\mathbf{0}\right)$

\star Model 1: $\boldsymbol{\Sigma}_{1}=\mathbf{I}, \boldsymbol{\Sigma}_{2}=\operatorname{diag}\left(\mathbf{1 . \mathbf { 3 } _ { 1 0 }}, \mathbf{1}_{30}\right), \mu_{2}=\left(\mathbf{0} . \mathbf{7}_{10}^{\top}, \mathbf{0}_{30}^{\top}\right)^{\top}$.
\star Model 2: $\boldsymbol{\Sigma}_{1}=\operatorname{diag}\left(\mathbf{A}, \mathbf{I}_{20}\right)$, with \mathbf{A} equi-corr $\boldsymbol{\rho}=0.4$.

$$
\boldsymbol{\Sigma}_{2}=\left(\boldsymbol{\Sigma}_{1}^{-1}+\mathbf{I}\right)^{-1} \cdot \mu_{2}=\mathbf{0}_{d} .
$$

\star Model 3: $\boldsymbol{\Sigma}_{1}, \boldsymbol{\Sigma}_{2}$ as Model 2 and μ_{2} as Model 1.

Methods: \star Sparse Logistic Reg with interactions (SLR) \star Linear-SLR \star ROAD \star Quadro-0 (non-robust)

Design of Simulation: t-Distribution Settings

Multivariate t-dist.: $t_{v}\left(\mu_{1}, \boldsymbol{\Sigma}_{1}\right)$ and $t_{v}\left(\mu_{2}, \boldsymbol{\Sigma}_{2}\right)$, with $\boldsymbol{v}=5$.
\star Model 4: Same as Model 1.
\star Model 5: Same as Model 1, but $\boldsymbol{\Sigma}_{2}$ fractional WN w/

$$
I=0.2, \text { i.e. }\left|\Sigma_{2}(i, j)\right|=O\left(|i-j|^{1-2 \prime}\right) .
$$

\star Model 6: Same as Model 1, but $\boldsymbol{\Sigma}_{2}=\left(0.6^{|j-k|}\right)-\operatorname{AR}(1)$.

Results - Classification errors

Results - Classification errors

	QUADRO	SLR	L-SLR	ROAD
Model 1	0.179	0.235	0.191	0.246
Model 2	0.144	0.224	0.470	0.491
Model 3	0.109	0.164	0.176	0.235

	QUADRO	QUADRO-0	SLR	L-SLR
Model 4	0.136	0.144	0.167	0.157
Model 5	0.161	0.173	0.184	0.184
Model 6	0.130	$\mathbf{0 . 1 2 9}$	0.152	0.211

Results — Rayleigh Quotients

Rayleigh Quotient

Rayleigh Quotient

Rayleigh Quotient

Rayleigh Quotient

Rayleigh Quotient

Rayleigh Quotient

Results — Rayleigh Quotients

	QUADRO	SLR	L-SLR	ROAD
Model 1	3.016	1.874	2.897	2.193
Model 2	3.081	1.508	0	0
Model 3	5.377	2.681	3.027	2.184

	QUADRO	QUADRO-0	SLR	L-SLR
Model 4	3.179	2.975	1.984	2.846
Model 5	2.415	2.191	1.625	2.166
Model 6	2.374	2.160	1.363	1.669

Empirical Study: Breast Tumor Data

GPL96 data: $d=12679$ genes, $n_{1}=1142$ (breast tumor) and $n_{2}=6982$ (non-breast tumor).

Testing and training: 200 and 942 samples from each class.
\star Repeat 100 times
Tuning parameters: Half used to estimate $(\delta, \boldsymbol{\Sigma})$; half selecting regularization parameters.

Classification errors on testing set

QUADRO	SLR	L-SLR
0.014	0.025	0.025
(0.007)	(0.007)	(0.009)

Pathway Enrichment

Quadro pathways (139)

SLR pathways (128)

Figure: From KEGG database, genes selected by Quadro belong to 5 of the pathways that contain more than two genes; correspondingly, genes selected by SLR belong to 7 pathways.

* QUADRO provides fewer, but more enriched pathways.
* ECM-receptor is highly related to breast cancer.

Gene Ontology (GO) Enrichment Analysis

GO ID	GO attribute	No. of Genes	p-value
0048856	anatomical structure development	58	$3.7 \mathrm{E}-12$
0032502	developmental process	62	$2.9 \mathrm{E}-10$
0048731	system development	52	$3.1 \mathrm{E}-10$
0007275	multicellular organismal development	55	$1.8 \mathrm{E}-8$
0001501	skeletal system development	15	$1.3 \mathrm{E}-6$
0032501	multicellular organismal process	66	$1.4 \mathrm{E}-6$
0048513	organ development	37	$1.4 \mathrm{E}-6$
0009653	anatomical structure morphogenesis	28	$8.7 \mathrm{E}-6$
0048869	cellular developmental process	34	$1.9 \mathrm{E}-5$
0030154	cell differentiation	33	$2.1 \mathrm{E}-5$
0007155	cell adhesion	18	$2.4 \mathrm{E}-4$
0022610	biological adhesion	18	$2.2 \mathrm{E}-4$
0042127	regulation of cell proliferation	19	$2.9 \mathrm{E}-4$
0009888	tissue development	17	$3.7 \mathrm{E}-4$
0007398	ectoderm development	9	$4.8 \mathrm{E}-4$
0048518	positive regulation of biological process	34	$5.6 \mathrm{E}-4$
0009605	response to external stimulus	20	$6.3 \mathrm{E}-4$
0043062	extracellular structure organization	8	$7.4 \mathrm{E}-4$
0007399	nervous system development	22	$8.4 \mathrm{E}-4$

\star Selected biological processes are related to previously enriched pathways.
\star Cell adhesion is known to be highly related to cell communication pathways, including focal adhesion and ECM-receptor interaction.

Summary

* Propose Rayleigh Quotient for quadratic classification.
\star Use elliptical dist to avoid fourth cross-moments.
* Adopt Catoni's M-est and Kendall's tau for robust est.

Convex optimization solved by augmented Lagrangian.
\star Explore its applications to classification.

Oracle inequalities, Rayleigh quotient and class. error.

Summary

* Propose Rayleigh Quotient for quadratic classification.
\star Use elliptical dist to avoid fourth cross-moments.
* Adopt Catoni's M-est and Kendall's tau for robust est.
\star Convex optimization solved by augmented Lagrangian.
\star Explore its applications to classification.
\star Oracle inequalities, Rayleigh quotient and class. error.

The End

