Complete the following problems without using a calculator :

1. Evaluate:
a) $\frac{1}{2} \div 3=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
b) $\frac{1}{2} \div\left(\frac{-1}{4}\right)=\frac{1}{2} \times\left(-\frac{2}{1}\right)=-2$
c) $7\left(3^{2}-4\right)=7(9-4)=7(5)=35$
d) $2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$
e) $\left(3^{2}\right)^{-1}=3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
2. Evaluate and express your answer as a decimal:
a) $5+\frac{3}{2}=\frac{10}{2}+\frac{3}{2}=\frac{13}{2}=6 \frac{1}{2}=6.5$
b) $\frac{3}{4}-2=\frac{3}{4}-\frac{8}{4}=-\frac{5}{4}=-1 \frac{1}{4}=-1.25$
3. Simplify:
a) $8^{\frac{2}{3}} 2^{-\frac{1}{3}}=\left(2^{3}\right)^{2 / 3} 2^{-1 / 3}=2^{2} 2^{-1 / 3}=2^{2^{-1 / 3}}=2^{6 / 33^{-1 / 3}}=2^{5 / 3}$
b) $\sqrt{16 x^{6}}=\sqrt{4^{2}\left(x^{3}\right)^{2}}=4 x^{3}$
c) $10^{\frac{1}{2}} 10^{\frac{3}{2}}=10^{1 / 2+3 / 2}=10^{4 / 2}=10^{2}=100$
4. Simplify:
a) $10 x-(3 x-(7 x+2))=10 x-(3 x-7 x-2)=10 x-(-4 x-2)$

$$
=10 x+4 x+2=14 x+2
$$

b) $\frac{(4 / 5 x)}{(-2 / 15 x)}=\frac{4^{2}}{5 x} \times \frac{-\frac{15 x^{-3}}{2}}{2}=(2)(-3)=-6$
5. Find the product:
a) $\begin{aligned} &(4 x+6)^{2}=(4 x+6)(4 x+6)=16 x^{2}+24 x+24 x+36 \\ &=16 x^{2}+48 x+36 \\ &\end{aligned}$
b) $(2 x+1)(5 x-8)=10 x^{2}+5 x-16 x-8=10 x^{2}-11 x-8$
c) $6 x\left(3 x^{2}-7 x+2\right)=18 x^{3}-42 x^{2}+12 x$
6. (Please write the fractions in the simplest form.)
a) Convert 35% to a fraction. Convert 35% to a decimal.

$$
35 \%=\frac{35^{7}}{100}=\frac{7}{20}
$$

$$
35 \%=0.35
$$

b) Convert 0.12 to a percent. Convert 0.12 to a fraction.

$$
0.12=12 \% \quad 0.12=\frac{122^{3}}{100}=\frac{3}{25}
$$

c) Convert $\frac{3}{5}$ to a percent. Convert $\frac{3}{5}$ to a decimal.

$$
\begin{aligned}
\frac{3}{5} & =\frac{x}{100} \\
3(100) & =5 x \\
\frac{300}{5} & =x
\end{aligned}
$$

$$
x=60
$$

$$
\text { since } \frac{3}{5}=\frac{60}{100} \text { then }
$$

$$
\frac{3}{5}=60 \%=0.6
$$

7. Solve for x.
a) $12 x-8=-2$

$$
\begin{aligned}
12 x & =-2+8 \\
12 x & =6 \\
x & =6 / 12=1 / 2
\end{aligned}
$$

b) $\frac{2 x+5}{10 x+3}=\frac{1}{3}$

$$
\begin{aligned}
(2 x+5) 3 & =(10 x+3) 1 \\
6 x+15 & =10 x+3 \\
15-3 & =10 x-6 x \\
12 & =4 x \\
\frac{12}{4} & =x \\
3 & =x
\end{aligned}
$$

8. a) What is $\frac{1}{3}$ of $\frac{3}{5} ?\left(\frac{1}{3}\right) \times\left(\frac{3}{5}\right)=\frac{1}{5}$
b) What is 20% of 84 ?

$$
\begin{array}{r}
4 ? \quad 84 \\
\times .20 \\
\hline 16.80
\end{array}
$$

c) 75% of what number is 36 ?

$$
75 \%=\frac{3}{4}
$$

$$
\begin{aligned}
\frac{3}{4} x & =36 \\
x & =36(4 / 3) \\
x & =48
\end{aligned}
$$

9. Your average so far in a class is 88 . This average counts for 75% of your grade and the final exam counts for 25% of your grade. What do you need to make on the final exam for your course average to be at least 90 ?

$$
\begin{aligned}
& 88 \\
& \frac{8.75}{440} \\
& \frac{616}{66.00}
\end{aligned}
$$

$$
\begin{aligned}
88(0.75)+x(0.25) & =90 \\
66+x(0.25) & =96 \\
x(0.25) & =24 \\
x\left(\frac{1}{4}\right) & =24
\end{aligned}
$$

10. A line contains the points $(4,5)$ and $(1,-1)$.
a) Find the equation of the line.
b) What is the slope of the line?
c) What is the y-intercept of the line?
d) Graph the line.

$$
\text { SLOPE }=\frac{\text { change in } y}{\text { change in } x}=\frac{5-(-1)}{4-1}=\frac{6}{3}=2=m
$$

$y=m x+b$ where $m=$ slope and $b=y$ intercept to find the y intercept, substitute $m=2$ and either given point and solve for b.

Page 4 of 7

$$
\begin{aligned}
& y=m x+b \\
& 5=2(4)+b
\end{aligned}
$$

$$
5=8+b
$$

$$
\begin{aligned}
& \text { sa } y=2 x-3 \\
& \text { b) } m=2 \\
& \text { c) } b=-3
\end{aligned}
$$

11. Consider the equation $y=3 x-8$
a) Find y when $x=-1$.

$$
\begin{aligned}
& =3 x-8 \\
& y=3(-1)-8=-3-8=-11
\end{aligned}
$$

b) Find x when $y=2 . \quad 2=3 x-8$

$$
\begin{aligned}
& 10=3 x \\
& \sqrt{\frac{10}{3}}=x
\end{aligned}
$$

12. a) Write using scientific notation: $00000683=6.83 \times 10^{-5}$
b) Write in decimal form without scientific notation: 1.82×10^{-6}

13. Evaluate:
a) $\log _{2} 8=x \Rightarrow 2^{x}=8 \Rightarrow 2^{x}=2^{3} \Rightarrow x=3$
b) $\ln \sqrt{e}=\ln \left(e^{i} 2\right)=1 / 2$
c) $e^{2 \ln 2}=e^{\ln 2^{2}}=2^{2}=4$
14. Simplify: $\ln 3 x-\ln 9 x=\ln (3 x)+\ln (9 x)^{-1}$

$$
=\ln \left(\frac{3 x}{9 x}\right)=\ln \left(\frac{1}{3}\right)
$$

III. $e=\ln (1)$
a) I only is true
b) II only is true
c) III only is true
d) I and III are true
$(1,0)$ I. $e \approx 2.718$ is tree. e is a constant approx ≈ 2.718 II. $\Pi \approx 3.4($ not $e)$ so this statement is false
III. $e \approx 2.718$, $\ln (1)=O\left(\right.$ since $\left.e^{0}=1\right)$ so this statement is false.
16. The price of gas increased by 8% in June and another 15% in July. What was the total percentage increase from June 1 to July 31 ?

$$
\begin{array}{r}
1.08 \\
\times 1.15 \\
\hline 1540 \\
108 \\
108 \\
\hline 1.2420
\end{array}
$$

the two months

$$
\bar{P}(\text { nausea })=0.3 \quad P(\text { good })=0.7
$$

17. Approximately 30% of patients receiving a medication experience nausea.
a) Suppose 2 patients are selected at random. Find the probability that both patients experience nausea.
b) Suppose 2 patients are selected at random. Find the probability that neither experience nausea.
c) Suppose 2 patients are selected at random. Find the probability that exactly one experiences nausea.
d) Suppose 2 patients are selected at random. Find the probability that at least one experiences nausea.
EAcH Of THE TWO PAAIENTS COULD BE ETHER
"NAUSEOUS" or "GOOD". SO THE POSSIBLE EVENS
ARE: $\{(N, N),(N, G),(G, N),(G, G)\}$ Undivainale poobsbibilies

$$
\begin{aligned}
& =P(N) P(N)=(0.3)(0.3)+0.09
\end{aligned}
$$

$P(H=$ NAUSEOUS AND 2 NH GOOD = RUN), G)

$$
\begin{aligned}
& \text { NAUSEOUS AND } \\
& =P(N) P(G)=(0.3)(0.7)=\frac{0.21}{P((G),}
\end{aligned}
$$

$$
\begin{aligned}
& G O O D A N D \\
& =P(G) P(N)=(0.7)(0.3)=0.21
\end{aligned}
$$

$P(1 / 2) G 000$ AND $2=16000)=P(G, G)$

$$
\begin{aligned}
& P(10) G O O D A N O 2=G 000)=P(G, G) \\
& =P(G) P(G)=(0.7)(0.7)=0.49 \\
& C H E C K \quad 0.09+0.21+0.21+0.49=1.00
\end{aligned}
$$

So, a) P (Bort ARE NAUSEOUS) $=0.09$

$$
\begin{aligned}
& \text { a) } P(\text { Bort ARE NAUSEOUS }=10.01 \\
& \text { b) } P(\text { NE TIER NAUSEOUS }=0.49
\end{aligned}
$$

c) P LeXACTLY ONE IS NAUSEOUS $)=P((N, G)$ OR (G, N)

$$
=P(N, G)+P(G, N)=0.21+0.21=0.42
$$

d) P (AT LEAST ONE IS NAUSEOUS) $=$

$$
\begin{aligned}
& \text { EAST ONE IS NAME OR }(N, N)] \\
& =P(N, G) \& R(G, N) \\
& =P(N, G)+P(G, N)+P(N, N) \\
& =0.21+0.21+0.09=0.51
\end{aligned}
$$

