Subsample ignorable likelihood methods for regression with missing values of covariates (throwing data away can actually pay!)

Roderick J. Little

Outline

- Likelihood methods for repeated-measures with missing data
 - Missing data for outcomes and predictors
- Tools: Ignorable likelihood methods, selective discarding of incomplete cases
 - Positive feature: no model required for missing-data mechanism, even though some models are not MAR
- Also apply ideas to missing covariates in survival analysis
- Little & Zhang (in press)

Key Idea

- Rubin's (1976) MAR theory does not distinguish between missing outcomes and predictors
 - Here adopt a "divide and conquer" strategy
- An alternative to MNAR modeling the missing data mechanism is to drop cases with missing values of predictors from the analysis
 - Valid when missingness does not depend on outcomes

Missing Data: General Strategies

Likelihood approaches

- Maximum Likelihood (ML, REML) for large samples
- Bayes for small samples
- Multiple imputation (MI) of missing values based on predictive distribution for a Bayesian model, with Bayesian MI combining rules (SAS PROC MI, IVEWARE, MICE, etc.)
- "Ignorable likelihood" no model for missing-data mechanism
- Assumes data are missing at random (MAR): "missingness does not depend on missing data, given observed data"
- When not MAR, ML generally requires a model for the mechanism, which is often weakly identified and vulnerable to misspecification
- Here, discuss methods that avoid modeling the mechanism

Unweighted CC analysis

- Drops incomplete cases
- Hence inefficient if there is substantial information in these cases
- •Loss of information depends on pattern and estimand
- •E.g. Figure 1: for mean of *Y* the incomplete cases have substantial information, when *X*'s are predictive
- •For regression of *Y* on *X*, incomplete cases have no information, under MAR
- •But there is info under NMAR

Figure 1

Missing data in X

Target: regression of Y on X, Z; missing data on X

IL methods include information for the regression in the incomplete cases (particularly intercept and coefficients of *Z*) and are valid assuming MAR:

$$Pr(X \text{ missing}) = g(Z, Y)$$

BUT: if Pr(X missing) = g(Z, X)

CC analysis is consistent, but IL methods (or weighted CC) are inconsistent since mechanism is not MAR

Simulations favoring IL often generate data under MAR, hence are biased against CC

(A) Missing data in X

Could be

/vector

	Pattern	Observation, i	Z_i	\mathcal{X}_{i}	\mathcal{Y}_{i}	R_{x_i}
Z_{i}	P1	i = 1,,m	~	~	~	$u_x = (1,,1)$
	P2	i = m+1,,n	√	?	√	$\overline{\mathcal{U}}_{x}$

Key: √ denotes observed, ? denotes observed or missing

P1: complete cases

P2: incomplete *X*

XMAR ⇒ Ignorable Likelihood

Target: Parameters ϕ of regression of Y on X, Z

Full Model: $p(x_i, y_i | z_i, \theta) \times p(R_{x_i} | z_i, x_i, y_i, \psi); \phi = \phi(\theta)$

If we assume XMAR:

$$p(R_{x_i} | z_i, x_i, y_i, \psi) = p(R_{x_i} | z_i, x_{\text{obs},i}, y_i, \psi) \text{ for all } x_{\text{mis},i}$$

Then $L_{\text{full}}(\theta, \psi) = L_{\text{ign}}(\theta) \times L_{\text{md}}(\psi)$, can base inference on

$$L_{\text{ign}}(\theta) = \text{const.} \times \prod_{i=1}^{n} p(x_{\text{obs},i}, y_i \mid z_i, \theta)$$

XMAR ⇒ Ignorable Likelihood

Target: $\phi = \phi(\theta)$ = parameters of regression of Y on X, Z

ML: $\hat{\phi} = \phi(\hat{\theta})$

Bayes: draw $\phi^{(d)} = \phi(\theta^{(d)})$

Multiple imputation: draw $X_{\text{mis}}^{(d)} \sim P(X_{\text{mis}} \mid \text{data})$, apply MI combining rules to estimates of ϕ

XCOV ⇒ Complete-Case Analysis

Assume XCOV:completeness of *X* depends on covariates, not outcomes:

$$p(R_{x_i} = u_x \mid z_i, x_i, y_i, \psi)) = p(R_{x_i} = u_x \mid z_i, x_i, \psi)) \text{ for all } y_i \text{ (MNAR)}$$

$$L_{\text{full}}(\theta, \psi) = \prod_{i=1}^{m} p(R_{x_i} = u_x, x_i, y_i \mid z_i, \theta, \psi) \prod_{i=m+1}^{n} p(R_{x_i}, x_{\text{obs},i}, y_i \mid z_i, \theta, \psi)$$

$$= \prod_{i=1}^{m} p(y_i \mid x_i, R_{x_i} = u_x, z_i, \theta, \psi) p(R_{x_i} = u_x, x_i \mid z_i, \theta, \psi)$$

$$= \prod_{i=1}^{m} p(y_i \mid x_i, z_i, \phi) \times p(R_{x_i} = u_x, x_i \mid z_i, \theta, \psi) \prod_{i=m+1}^{n} p(R_{x_i}, x_{\text{obs},i}, y_i \mid z_i, \theta, \psi)$$

$$= L_{\text{co}}(\phi) \times L_{\text{rest}}(\theta, \psi)$$

Maximizing $L_{cc}(\phi)$ is valid, but info in $L_{rest}(\theta, \psi)$ except in special cases

(B) Missing data on X and Y

Could be

/vector

Pattern	Observation, i	Z_i	X_i	\mathcal{Y}_i	$R_{_{\chi_{_i}}}$
P1	i = 1,,m	$\sqrt{}$	√	?	$u_x = (1,,1)$
P2	i = m+1,,n	V	?	?	\overline{u}_{x}

Key: √ denotes observed, ? denotes observed or missing

P1: covariates complete

P2: *x* incomplete

XYMAR ⇒ Ignorable Likelihood

Target: Parameters ϕ of regression of Y on X, Z

Model: $p(x_i, y_i | z_i, \theta)$

Assume XYMAR:

$$p(R_{x_i}, R_{y_i} \mid z_i, x_i, y_i, \psi) = p(R_{x_i}, R_{y_i} \mid z_i, x_{\text{obs},i}, y_{\text{obs},i}, \psi)$$
for all $x_{\text{mis},i}, y_{\text{mis},i}$

Then $L_{\text{full}}(\theta, \psi) = L_{\text{ign}}(\theta) \times L_{\text{md}}(\psi)$, can base inference on

$$L_{\text{ign}}(\theta) = \text{const.} \times \prod_{i=1}^{n} p(x_{\text{obs},i}, y_{\text{obs},i} \mid z_i, \theta)$$

IL Inference about $\phi(\theta)$, as before

XCOV, YSMAR \Rightarrow IL on cases with X observed Target: Parameters ϕ of regression of Y on X, Z

Assume:

XCOV: completeness of X depends on covariates, not outcomes:

$$p(R_{x_i} = u_x \mid z_i, x_i, y_i, \psi))$$

$$= p(R_{x_i} = u_x \mid z_i, x_i, \psi) \text{ for all } y_i$$

$$VSM \Delta R: V \text{ is } M \Delta R \text{ in subsample with } Y \text{ observed}$$

YSMAR: Y is MAR in subsample with X observed:

$$p(R_{y_i} | R_{x_i} = u_x, z_i, x_i, y_i, \psi)$$

$$= p(R_{y_i} | R_{x_i} = u_x, z_i, x_i, y_{\text{obs},i}, \psi) \text{ for all } y_i$$
MNAR

SSIL: Apply IL to subsample with X fully observed (P1)

(B) Missing data on X and Y

Could be

/vector

Pattern	Observation, i	Z_i	\mathcal{X}_{i}	\mathcal{Y}_{i}	R_{x_i}
P1	$i = 1, \ldots, m$	7	V	?	$u_x = (1,,1)$
P2	i = m+1,,n	V	?	?	\overline{u}_x

Key: √ denotes observed, ? denotes observed or missing

P1: covariates complete

P2: *x* incomplete

SSIL likelihood under XCOV, YSMAR

$$L_{\text{full}}(\theta, \psi) = \prod_{i=1}^{n} p(R_{x_{i}}, x_{\text{obs},i}, R_{y_{i}}, y_{\text{obs},i} \mid z_{i}, \theta, \psi)$$

$$= \prod_{i=1}^{m} p(R_{x_{i}} = u_{x}, x_{i}, R_{y_{i}}, y_{\text{obs},i} \mid z_{i}, \theta, \psi) \times L_{\text{rest}}(\theta, \psi)$$

$$= L_{\text{rest}}(\theta, \psi) \times \prod_{i=1}^{m} \left(p(R_{x_{i}} = u_{x}, x_{i} \mid z_{i}, \theta, \psi) \right) \qquad \longleftarrow \qquad L_{\text{rest}}^{*}(\theta, \psi)$$

$$\times \prod_{i=1}^{m} \left(\int p(y_{i} \mid x_{i}, R_{x_{i}} = u_{x}, z_{i}, \theta, \psi) p(R_{y_{i}} \mid y_{i}, x_{i}, R_{x_{i}} = u_{x}, z_{i}, \theta, \psi) dy_{\text{mis}} \right)$$

$$\times \text{XCOV} \downarrow \qquad \text{YSMAR} \downarrow$$

$$= L_{\text{rest}}^{*}(\theta, \psi) \times \prod_{i=1}^{m} \int p(y_{i} \mid x_{i}, z_{i}, \phi) p(R_{y_{i}} \mid y_{\text{obs},i}, x_{i}, R_{x_{i}} = u_{x}, z_{i}, \psi) dy_{\text{mis}}$$

$$= L_{\text{rest}}^{*}(\theta, \psi) \times \prod_{i=1}^{m} p(y_{\text{obs},i} \mid x_{i}, z_{i}, \phi) \prod_{i=1}^{m} p(R_{y_{i}} \mid y_{\text{obs},i}, x_{i}, R_{x_{i}} = u_{x}, z_{i}, \psi)$$

SSIL maximizes this

Two covariates X, W with different mechanisms

Pattern	Observation, i	Z_i	X_i	W_i	\mathcal{Y}_i	R_{x_i}	R_{w_i}
P1	i = 1,,m	1	V	V	?	u_x	u_{w}
P2	$i = m + 1, \dots, m + r$	1	V	?	?	u_x	\overline{u}_w
P3	$i = m + r + 1, \dots, n$	1	?	?	?	\overline{u}_{x}	\overline{u}_{w}

P1: covariates complete

P2: x obs, w, y may be mis

P3: x mis, w, y may be mis

XCOV, WYSMAR \Rightarrow IL on cases with X observed

- Target: regression of Y on Z, X, and W
- Assume:

(XCOV) Completeness of *X* can depend on covariates but not *Y*:

$$p(R_{x_i} = u_x | z_i, x_i, w_i, y_i, \psi_x)) = p(R_{x_i} = u_x | z_i, x_i, w_i, \psi_x))$$
 for all y_i

(WYMAR) Missingness of (W, Y) is MAR within subsample of cases with X observed:

$$\begin{split} p(R_{(w_i, y_i)} \mid z_i, x_i, w_i, y_i, R_{x_i} &= u_x; \psi_{wy \cdot x}) = \\ p(R_{(w_i, y_i)} \mid z_i, x_i, w_{\text{obs}, i}, y_{\text{obs}, i}, R_{x_i} &= u_x; \psi_{wy \cdot x}) \quad \text{for all } w_{\text{mis}, i}, y_{\text{mis}, i} \end{split}$$

- SSIL: apply IL method (e.g. ML) to the subsample of cases for which *X* is observed
- Proof of consistency: similar to previous case, treating W and Y as block

Two covariates X, W with different mechanisms

Pattern	Observation, i	\mathcal{Z}_i	\mathcal{X}_{i}	W_{i}	\mathcal{Y}_i	R_{x_i}	R_{w_i}	
P1	$i = 1, \dots, m$	V		V	?	u_x	u_w	
P2	$i = m + 1, \dots, m + r$	V	V	?	?	u_x	\overline{u}_w	
P3	$i = m + r + 1, \dots, n$	√	?	?	?	$\overline{\mathcal{U}}_{x}$	\overline{u}_{w}	

SSIL: analyze cases in patterns 1 and 2 z_i x_i w_i y_i

P1: covariates complete

P2: x obs, w, y may be mis

P3: x mis, w, y may be mis

Simulation Study

• For each of 1000 replications, 5000 observations Z, W, X and Y generated as:

$$(y_{i} | z_{i}, w_{i}, x_{i}) \sim_{\text{ind}} N(1 + z_{i} + w_{i} + x_{i}, 1)$$

$$(z_{i}, w_{i}, x_{i}) \sim_{\text{ind}} N(0, \Sigma), \ \Sigma = \begin{pmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{pmatrix}$$

• 20-35% of missing values of W and X generated by four mechanisms

Simulation: missing data mechanisms

(w)

(w) (w) (w) (x)

Mechanisms	$\alpha_0^{(w)}$	$\alpha_z^{(w)}$	$\alpha_w^{(w)}$	$\alpha_x^{(w)}$	$\alpha_{y}^{(w)}$	$\alpha_0^{(x)}$	$\alpha_z^{(x)}$	$\alpha_{w}^{(x)}$	$\alpha_x^{(x)}$	$\boldsymbol{\alpha}_{\mathrm{y}}^{(w)}$	
I: All valid	-1	1	0	0	0	-1	1	0	0	0	
II: CC valid	-1	1	1	1	0	-1	1	1	1	0	
III: IML valid	-2	1	0	0	1	-2	1	1	0	1	
IV: SSIML valid	-1	1	1	1	0	-2	1	1	0	1	
$\operatorname{logit}(P(R_{w_i} = 0 \mid z_i,$	$W_i, X_i,$	$(y_i)) =$	$lpha_0^{(w)}$ -	$+ \alpha_z^{(w)}$	$z_i + \alpha$	$W_{i}^{(w)}W_{i}$	$+\alpha_x^{(w)}$	$(x_i + a)$	$\chi_y^{(w)} y_i$		
$logit(P(R_{x_i} = 0 R_{w_i} = 1, z_i, w_i, x_i, y_i)) = \alpha_0^{(x)} + \alpha_z^{(x)} z_i + \alpha_w^{(x)} w_i + \alpha_z^{(x)} x_i + \alpha_y^{(x)} y_i$											

RMSEs*1000 of Estimated Regression Coefficients for Before Deletion (BD), Complete Cases (CC), Ignorable Maximum Likelihood (IML) and Subsample Ignorable Maximum Likelihood (SSIML), under Four Missing Data Mechanisms.

	0	$\rho = 0.8$							
	I*	II	III	IV	I	II	III	IV	
BD	27	28	28	27	50	46	50	46	
CC	45	44	553	322	86	71	426	246	
IML	37	231	36	116	58	96	53	90	
SSIML	42	133	360	49	70	80	319	69	
Valid:	ALL	CC	IML	SSIML	ALL	CC	IML	SSIML	
UNC 2011 SSIL									

Missing Covariates in Survival Analysis

 $\{t_1,...,t_k\}$ distinct survival times, j= unit that fails at time t_j (no ties); $R_j=$ risk set at time t_j , z_j , x_j , $w_j=$ covariates, as before.

Complete data: contribution of data at time t_j to partial likelihood is

$$L_{j} = \frac{\lambda(y = t_{j} \mid z_{j}, x_{j}, w_{j}, \beta)}{\sum_{k \in R_{i}} \lambda(y = t_{k} \mid z_{k}, x_{k}, w_{k}, \beta)}, \lambda(y = t_{j} \mid z_{j}, x_{j}, w_{j}, \beta) = \text{hazard}$$

With z_j, w_j fully observed, x_j covariate-dependent complete, i.e.:

$$\Pr(R_{x_{j}} = u_{x} \mid y_{j}, z_{j}, x_{j}, w_{j}) = \Pr(R_{x_{j}} = u_{x} \mid z_{j}, x_{j}, w_{j})$$
then $\lambda(y = t_{j} \mid R_{x_{i}} = u_{x}, z_{j}, x_{j}, w_{j}, \beta) = \lambda(y = t_{j} \mid z_{j}, x_{j}, w_{j}, \beta)$

That is, conditioning on $R_{x_j} = u_x$ for each risk set

gives a valid partial likelihood

also OK for time-varying x_i

SSIL for Survival Analysis

SSIL for partial likelihood: Assume

XCOV: x_j is covariate-dependent missing:

$$Pr(R_{x_j} = u_x | y_j, z_j, x_j, w_j) = Pr(R_{x_j} = u_x | z_j, x_j, w_j)$$

WSMAR: missing values of w_i are MAR

in subsample with x_i observed:

$$\Pr(R_{w_j} \mid R_{x_j} = u_x, y_j, z_j, x_j, w_j) = \Pr(R_{w_j} \mid R_{x_j} = u_x, y_{\text{obs},j}, z_j, x_j, w_{\text{obs},j})$$

Then can apply SSIL methods to partial likelihood in subsample with w_j observed.

How to choose X, W

- Choice requires understanding of the mechanism:
- Variables that are missing based on their underlying values belong in *X*
- Variables that are SMAR belong in W
- Collecting data about why variables are missing is obviously useful to get the model right
- But this applies to all missing data adjustments...

Other questions and points

- How much is lost from SSIL relative to full likelihood model of data and missing data mechanism?
 - In some special cases, SSIL is efficient for a patternmixture model
 - In other cases, trade-off between additional specification of mechanism and loss of efficiency from conditional likelihood
- MAR analysis applied to the subset does not have to be likelihood-based
 - E.g. weighted GEE, AIPWEE
- Assuming XCOV, MNAR analysis for *Y* can also be applied to subset with *X* observed

A longitudinal application of SMAR

• Zhou, Little and Kalbfleisch (2011) consider <u>block-sequential</u> missing-data models factored as

$$\begin{split} f(V_{i}, R_{i} \mid \boldsymbol{\theta}, \boldsymbol{\psi}) \\ &= f(V_{i(1)}, R_{i(1)} \mid \boldsymbol{\theta}^{(1)}, \boldsymbol{\psi}^{(1)}) \\ &\times f(V_{i(2)}, R_{i(2)} \mid H_{i(1)}, \boldsymbol{\theta}^{(2)}, \boldsymbol{\psi}^{(2)}) \\ &\dots & \times f(V_{i(B)}, R_{i(B)} \mid H_{i(B-1)}, \boldsymbol{\theta}^{(B)}, \boldsymbol{\psi}^{(B)}) \end{split}$$

 $H_{i(j)}$ = history up to j, including missing-data indicators

$$f(V_{i(j)}, R_{i(j)} | H_{i(j-1)}, \theta^{(j)}, \psi^{(j)})$$

could have selection or pattern-mixture factorization

Special case: Block-conditional MAR models

$$\begin{split} f(V_{i(j)}, R_{i(j)} \mid H_{i(j-1)}, \theta^{(j)}, \psi^{(j)}) \\ &= f(V_{i(j)} \mid H_{i(j-1)}, \theta^{(j)}) \times f(R_{i(j)} \mid H_{i(j-1)}, V_{i(j)}, \psi^{(j)}) \\ &= f(V_{i(j)} \mid V_{i(1)}, ..., V_{i(j-1)}, \theta^{(j)}) \times f(R_{i(j)} \mid H_{i(j-1)}, V_{\text{obs}, i(j)}, \psi^{(j)}) \\ &L_{\text{full}}(\theta, \psi \mid Y_{\text{obs}}, M) = L_{\text{bm}}(\theta) \times L_{\text{rest}}(\theta, \psi) \\ &L_{\text{bm}}(\theta) = \prod_{i=1}^{B} \prod_{j \in O_i} f(V_{\text{obs}, i(j)} \mid V_{i(1)}, ..., V_{i(j-1)}, \theta^{(j)}) \end{split}$$
 Extends SMAR

 $Q_j = \{ \text{Set of cases with } V_{i(1)}, ..., V_{i(j-1)} \text{ observed} \}$

 $L_{bm}(\theta)$ = Block-monotone reduced likelihood

Inference based on $L_{\rm bm}(\theta)$ is simpler, since does not involve ψ

Conclusions

- Sometimes discarding data is useful!
- SSIL: selectively discards data based on assumed missingdata mechanism
- More efficient than CC
- Valid for mechanisms where IL, CC are inconsistent
- Little, R.J. & Zhang, N. (2011). Subsample Ignorable Likelihood for Regression Analysis with Missing Data. To appear in *JRSSC*.
- Zhou, Y., Kalbfleisch, J.D. & Little, R.J. (2010). Block-Conditional MAR Models for Missing Data. *Statistical Science*, 25, 4, 517-532.
- rlittle@umich.edu for copy of papers

and thanks to my recent students...

Hyonggin An, Qi Long, Ying Yuan, Guangyu Zhang, Xiaoxi Zhang, Di An, Yan Zhou, Rebecca Andridge, Qixuan Chen, Ying Guo, Chia-Ning Wang, Nanhua Zhang