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Outline

Likelihood methods for repeated-measures with
missing data

— Missing data for outcomes and predictors

Tools: Ignorable likelihood methods, selective
discarding of incomplete cases

— Positive feature: no model required for missing-data
mechanism, even though some models are not MAR

Also apply 1deas to missing covariates in survival
analysis

Little & Zhang (1n press)
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Key Idea

 Rubin’s (1976) MAR theory does not distinguish
between missing outcomes and predictors

— Here adopt a “divide and conquer” strategy

e An alternative to MNAR modeling the missing
data mechanism 1s to drop cases with missing
values of predictors from the analysis

— Valid when missingness does not depend on outcomes
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Missing Data: General Strategies

.
}

Complete-Case Imputation Analyze

Analysis Incomplete

Weights Imputations e.g. maximum likelihood
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Likelihood approaches

Maximum Likelihood (ML, REML) for large samples
Bayes for small samples

Multiple imputation (MI) of missing values based on predictive

distribution for a Bayesian model, with Bayesian MI combining
rules (SAS PROC MI, IVEWARE, MICE, etc.)

“Ignorable likelihood” — no model for missing-data mechanism

Assumes data are missing at random (MAR): “missingness does
not depend on missing data, given observed data”

When not MAR, ML generally requires a model for the
mechanism, which 1s often weakly identified and vulnerable to
misspecification

Here, discuss methods that avoid modeling the mechanism
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Unweighted CC analysis

*Drops incomplete cases

* Hence inetficient if there 1s
substantial information in these cases
[ oss of information depends on
pattern and estimand

*E.g. Figure 1: for mean of Y the
incomplete cases have substantial
information, when X’s are predictive
*For regression of Y on X, incomplete

cases have no information, under MAR
eBut there 1s info under NMAR

X, X, X,Y

Figure 1
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Missing data in X

Target: regression of Y on X, Z; missing data on X

IL methods include information for the
regression in the incomplete cases
(particularly intercept and coefficients of
Z) and are valid assuming MAR:

Pr(X missing)= g(Z, Y)

BUT: if Pr(X missing)= g(Z, X)

CC analysis 1s consistent, but IL methods (or weighted CC)
are 1nconsistent since mechanism 1s not MAR

Simulations favoring IL often generate data under MAR,
hence are biased against CC
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(A) Missing data in X

Could be
/vector
Pattern | Observation, i Z, X, );l. R,
Pl i =1,..m N v Vol u = (1.0
P2 |i=m+l,..n| ? v I,

Key: V denotes observed, ? denotes observed or missing

Z.

P1: complete cases

P2: incomplete X

X,

l l

Yi
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XMAR = Ignorable Likelihood

Target: Parameters ¢ of regressionof ¥ on X,Z

Full Model: p(x;, y; 1 z;,0)X p(R_ 1 2,, %, y,;,¥); 9 = 9(6)
If we assume XMAR:
P(in l Zi"xi’ yi"”) — p(in | Zi"xobs,i’ yi"”) fOr aH ‘xmis,i

Then L., (6, ) =L_ (6)XL

1gn m

.(¥), can base inference on

L,,(0)=constx[ | p(xy..rv: 12,.60)
i=l
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XMAR = Ignorable Likelihood

Target: ¢ = ¢(0) = parameters of regression of Y on X,Z
ML: ¢ = ¢(6)

Bayes: draw ¢'“’ = ¢(8'")

Multiple imputation: draw X ‘¢’ ~ P(X __|data),

apply MI combining rules to estimates of ¢
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XCOV = Complete-Case Analysis

Assume XCOV:completeness of X depends on covariates, not outcomes:

p(Rx,. =u, | Zi"xi9yi’W)):p(in =u, | Zi’xivW)) for all y, (MNAR)

L,O@w) =[] pR, =u,.x.y1z.6, w)H PR Xy 1s, 12,0,
i=1 / \ i=m+I

:HP(y |XZ,R _MX,ZZ,H ',V)p(R =u_,x |Zz’9 W)

i=1

By XCOV X1 PR, . %y v: 1 2,.0.9)

i=m+1

_Hp(y |XI,Z1,¢)XP(R _ux"x |Zl,9 I/I)H p( Obsz’yilzi’e’w)

i=m+1
= Lcc (¢) X rest (9’ W)

Maximizing L (¢) is valid, but info in L__ (6,y) except in special cases
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(B) Missing data on X and Y

Could be
/Vector

Pattern | Observation, i | Z. X, V. R

l l

Pl i =1,..m N v 7w = (,..,1)

P2 i=m+1,..n| ? ? m

Key: V denotes observed, ? denotes observed or missing

& XY

l

P1: covariates complete

P2: x incomplete
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XYMAR = Ignorable Likelihood

Target: Parameters ¢ of regressionof ¥ on X,Z
Model: p(x,, y, 1 z;,6)
Assume XYMAR:
P(R.,R 1z,,%,y,¥)=pR_,R, 12, Xy Yops» V)

for all x

mis,i ° ymis,i

Then L, ,(6,y)=L_ (6)XL

1gn m

.(¥), can base inference on

ngn (6) = const.X H p('xobs,i > Yobs,i 12,,0)
i=1

IL Inference about ¢(8), as before
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XCOV, YSMAR = IL on cases with X observed
Target: Parameters ¢ of regressionof ¥ on X,Z

Assume:

XCOV: completeness of X depends on covariates, not outcomes:
p(Rxl_ =u_| Z,-,X,-,y,-,w))
— p(in =u_| zi,xl.,w)) for all y,

YSMAR: Y 1s MAR 1n subsamplewith X observed:

p(R IR =u,z,x,y,¥) . MNAR

- p(Ryl- | Rxl- = Uys 205 X5 Yopsi» W) Tor all y,

SSIL: Apply IL to subsample with X fully observed (P1)
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(B) Missing data on X and Y

Could be
/Vector

Pattern | Observation, i

P2 i=m+1,..n| ?

Key: V denotes observed, ? denotes observed or missing

TN

l

P1: covariates complete

P2: x incomplete

UNC 2011 SSIL
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SSIL likelihood under XCOV,YSMAR

L, (0, ) = HP( ObSl,Ry, s Vopsi | 2205 W)
Hp(R _ux’xl’Ry’yObszlzz’ew)X rest(e’w)
i=1

< rest (H W)

<L P01 5R, =02, 00) PR, 13 R, =05, 0.0)dy )
XCOV ! YSMAR

rest(e W)XHJ.p(y |xl’Zl’¢)p(R lyobsz’ z’R _l/l Zz’w)dymls

rest(e W)XHp(yobSllxz’Zz’¢)Hp(R lyobsz’ z’R _l/l Zz’w)
\

SSIL maximizes this
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Two covariates X, W with different mechanisms

Pattern | Observation, i z| x w| v| R, R

Pl i =1,..m S RV BV

X w

= 2 | 92 —

P2 I =m+1,....m+r R . ! 1 1
X w

= 2 121 2 — —

P3 I =m+r+l,....n v ! . . 73 i,

P1: covariates complete

P2: x obs, w, y may be mis

P3: x mis, w, y may be mis

UNC 2011 SSIL
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XCOV, WYSMAR = IL on cases with X observed

e Target: regression of Yon Z, X, and W

e Assume:
(XCOV) Completeness of X can depend on covariates but not Y

p(Rxl- =u, | Zi’xi’wi»)’i»';”x)) = p(Rxl- =u, | Zi’xi’wi’Wx)) for all y,
(WYMAR) Missingness of (W,Y) is MAR within subsample

of cases with X observed:

p(R(wi,yi) lZi"xi’Wi’yi’in :ux’ wy-x):

p(R(wi,yi) | LisXis Wobs,i > yobs,i > in = ux; wy~x) for all Wmis,i > ymis,i
e SSIL: apply IL method (e.g. ML) to the subsample of cases
for which X 1s observed

e Proof of consistency: similar to previous case, treating W
and Y as block
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Two covariates X, W with different mechanisms

Pattern | Observation, i

P3 i =m+r+l,...n | V| ? T ? m m

f

SSIL: analyze cases in patterns 1 and 2

./\/ 1yAV7 A
L i i Ji

P1: covariates complete

P2: x obs, w, y may be mis

P3: x mis, w, y may be mis
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Simulation Study

For each of 1000 replications, 5000 observations Z, W, X
and Y generated as:

(yl. | Zi,wl.,xl.) ~ NA+z,+w +x,1)
(1 Yo, ,0\
(2w, %) ~a NOX), 2= p 1 p
p P 1

20-35% of missing values of W and X generated by four
mechanisms
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Simulation: missing data mechanisms

Mechanisms a'(gw) C(;W) a'v(vw) a')(cw) a;W) a(gx) aix) a'v(vx) a)(cx) a;W)
I: All valid -1 1 0 0 0 -1 1 0 0 0
II: CC valid -1 1 1 1 0 -1 1 1 1 0

ll: IML valid -2 1 0 0 1 -2 1 1 0 1

IV: SSIML valid -1 1 1 1 0 -2 1 1 0 1

: _ — " 4 W (w) (w) (w)
loglt(P(Rwi—Olzi,wi,xi,yi))—ao tazta, wta X +ay,

: — — — ) (x) (x) (x) (x)
10g1t(P(in =01R, =1z, w,x, yl.)) =0y toa ' ta,w o Ay,
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RMSEs*1000 of Estimated Regression Coefficients for Before
Deletion (BD), Complete Cases (CC), Ignorable Maximum
Likelihood (IML) and Subsample Ignorable Maximum Likelihood

BD

CC

IML

SSIML

I*

27

45

37

42

p=0

II III IV
28 28 27
44 553 322
231 36 116
133 360 49

Valid: ALL CC

50

86

58

70

0

II
46
71
96

80

IML SSIML ALL CC
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(SSIML), under Four Missing Data Mechanisms.

0.8
11 IV
50 46
426 246
53 90
319 69
IML SSIML
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Missing Covariates 1n Survival Analysis

it,,....1, } distinct survival times, j = unit that fails at time ¢ j (no ties);
RJ. = risk set at time ¢ i L X W, = covariates, as before.

Complete data: contribution of data at time 7, to partial likelthood 1s
L = Ay=1;12;,x;,w,, f)

: Z/l(y:tklzk’xk’wk’ﬁ)

keRj

With z;,w, fully observed, x; covariate-dependent complete, 1..:

,l(yztj | zj,xj,wj,ﬂ): hazard

Pr(ij =u_l yj,zj,xj,wj)=Pr(ij :uxlzj,xj,wj)
then A(y =t Iij :ux,zj,xj,wj,ﬁ) = Ay =1, Izj,xj,wj,,b’)
That 1s, conditioning on R, =u_ for each risk set

gives a valid partial likelihood

also OK for time-varying x;
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SSIL for Survival Analysis

SSIL for partial likelihood: Assume
XCOV: x; 1s covariate-dependent missing:
Pr(ij =u ly.,z;,x;,w;) =Pr(ij =u lz,x;,w;)
WSMAR: missing values of w, are MAR

in subsample with x; observed:

Pr(ij |ij ZMX,)’]-,ZJ-,XJ-,Wj):Pr(RWj Iij :ux’yost’Zj’xj’Wost)

Then can apply SSIL methods to partial likelihood

in subsample with w; observed.
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How to choose X, W

Choice requires understanding of the mechanism:

Variables that are missing based on their
underlying values belong in X

Variables that are SMAR belong in W

Collecting data about why variables are missing 1s
obviously useful to get the model right

But this applies to all missing data adjustments...
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Other questions and points

e How much 1s lost from SSIL relative to full
likelihood model of data and missing data
mechanism?

— In some special cases, SSIL 1s efficient for a pattern-
mixture model

— In other cases, trade-off between additional
specification of mechanism and loss of efficiency from
conditional likelihood

« MAR analysis applied to the subset does not have
to be likelihood-based

— E.g. weighted GEE, AIPWEE

e Assuming XCOV, MNAR analysis for Y can also
be applied to subset with X observed
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A longitudinal application of SMAR

e Zhou, Little and Kalbfleisch (2011) consider block-
sequential missing-data models factored as

f (V,-,R- 16, W)
Xf(‘/L(Z)’Rz(Z) |Hz(1)’6(2)’w(2))

X f(‘/i(B) 4 Ri(B) | Hi(B—l) ? H(B) ? W(B) )

H_ . =history up to j, including missing-data indicators

i)
D) 1)
FVii Ry Hi oy, 67, 977)

could have selection or pattern-mixture factorization
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Special case: Block-conditional MAR models

f( i1(j)? l(]) l(] 1)’0(J) (j))
=f(vi(j) |Hi(j_1),9(]))><f(R(]) II—II(J -1)? l(])’w(]))
= F Vi Wiy Vi O OX F R ) VH 2y Vo505 W)
L, O.wlY, .M)=L_ (6)XL. (0,y)
Extends

L,.(6)= HHf(VobSZ(J) s Vi s 07) SMAR

j=1 i€Q;
Q, ={Set of cases with V,, ...V, .

L, (6) = Block-monotone reduced likelihood

Inference based on L, (6) 1s simpler, since does not involve ¥

observed}
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Conclusions

Sometimes discarding data 1s useful!

SSIL: selectively discards data based on assumed missing-
data mechanism

More efficient than CC
Valid for mechanisms where IL, CC are inconsistent

Little, R.J. & Zhang, N. (2011). Subsample Ignorable
Likelihood for Regression Analysis with Missing Data. To
appear 1n JRSSC.

Zhou, Y., Kalbfleisch, J.D. & Little, R.J. (2010). Block-
Conditional MAR Models for Missing Data. Statistical
Science, 25, 4, 517-532.

rlittle @umich.edu for copy of papers
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and thanks to my recent students...

Hyonggin An, Q1 Long, Ying Yuan, Guangyu Zhang, Xiaoxi
Zhang, D1 An, Yan Zhou, Rebecca Andridge, Qixuan Chen,
Ying Guo, Chia-Ning Wang, Nanhua Zhang
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