Pediatric Musculoskeletal Development & Sports Issues

Tom Bush DNP, FNP-BC, FAANP
Clinical Associate Professor
University of North Carolina at Chapel Hill
Schools of Nursing and Medicine

Objectives

• Describe conditions that predispose children and adolescents to sports injury
• Identify common injuries in the pediatric population
• Discuss risk factors and prevention strategies for sports injuries in the pediatric population.

Overuse Injuries

• Microtrauma to bone, muscle or tendon from repetitive stress without time to heal
 – Pain after activity
 – Pain during activity without change in performance
 – Pain with activity that restricts performance
 – Chronic pain at rest
• Year round sports participation
 – 50% of pediatric sports injuries associated with overuse
• Overtraining leads to burnout
Overuse Injuries

- Injuries more common during peak growth velocity
 - More likely if underlying biomechanical problem
- Sound training regimen
 - Maximum of 5 days a week
 - At least 1 day off from organized activity
 - 2-3 months off per year
 - Cross-training in off season and with overuse injury

Overuse Injuries

- Preventing burnout
 - Age-appropriate games- should be fun
 - 1-2 days off from organized sports each week
 - Longer breaks every 2-3 months
 - Cross-train to maintain conditioning
 - Focus on wellness
 - Listen to body for cues to slow down or alter training

Overuse Injuries

- Endurance events
 - Shorter in duration/length
 - Careful attention to safety and environmental conditions
 - Hypothermia
 - Hyperthermia
 - Child less able to handle heat stress
 - Gradual increase in time/mileage
 - 10% weekly
Overuse Injuries

• Year-round training and multiple teams
 – Focus on one sport or early specialization
 – One or more teams simultaneously
• Motivation for over involvement
 – Meeting needs of child or parent?
 • College scholarship or Olympic team
 – Less than 0.5% of high school athletes make it to professional level
• Athletes who participate in a variety of sports
 – Have fewer injuries
 – Play sports longer than those who specialize before puberty

Overuse Injuries

• Guidance
 – Assess and identify child’s motivation
 – 1-2 days off per week
 – 2-3 months off per year
 – Emphasize fun, skill acquisition and safety
 – One team per season
 • If two, keep training with guidelines above
 – Be alert for symptoms of burnout
 • Nonspecific complaints, fatigue, poor academic performance

Growing Bone

• May be tremendous ally in treatment.
 – Splinting dysplastic hip in newborn will result in normal joint that functions for a lifetime.
 – Angular deformities from fracture completely remodel allowing for nonoperative treatment.
• May also exacerbate deformity.
 – Damage to physis may lead to progressive angulation or shortening of limb.
Sports Injuries

- Traction apophysitis
 - Overuse injury that occurs in growing child
 - Tendon pulls on area of growing bone
 - Children and teens seldom get tendonitis
- Repetitive stress and microtrauma
 - Elbow- little leaguer elbow
 - Proximal tibia- Osgood-Schlatter disease
 - Calcaneous- sever disease
- Pelvis

Little Leaguer Elbow

- Traction apophysitis of the medial epicondyle or olecranon
 - Skeletally immature throwing athlete
- Medial epicondyle or olecranon avulsion
 - Older child closer to maturity (12-14)
- Ulnar collateral ligament sprain or tear
- Compression injuries
 - Osteochondritis dissecans
 - 12 and older after capitellum has ossified

Little Leaguer Elbow

- History
 - History of overuse
 - Number of pitches, innings, year round participation
 - Premature use of curveball
 - Mechanical symptoms if loose body
- Pain is most common symptom and may be loss of extension in later stages of OCD
 - Medial in apophysitis, avulsion & UCL injury
 - Lateral in OCD and Panner disease
 - Posterior in olecranon apophysitis/avulsion
Little Leaguer Elbow

- Radiographs help establish diagnosis
 - Contralateral views helpful
- MRI may be needed
 - OCD, Panner disease, UCL injuries
- Treatment
 - Rest from throwing for 3-6 months or longer
 - PT to maintain strength and restore motion
 - Avoid immobilization beyond acute phase
 - Surgery for fixation, microfracture or excision of loose body

Cuff & Deltoid Strength

- Patient holds arms out from sides horizontally and tries to lift them
- Normal findings
 - Strength should be equal in both arms, and deltoid muscles should be equal in size
- Common abnormalities
 - Loss of strength and wasting of the deltoid muscle

Shoulder Range of Motion

- Arms out from sides with elbows bent at 90 degrees; Patient raises hands vertically
- Normal findings
 - Hands go back equally and at least to vertical position
- Common abnormalities
 - Loss of external rotation, which may indicate shoulder problem or history of dislocation
Age Is Key Variable

- Younger than 30 likely to report symptoms of instability from dislocation/subluxation of glenohumeral joint or AC joint
- Middle-aged (30-50) more commonly report impingement. Frozen shoulder may occur in diabetics and thin females in this age group
- Older than 50 more likely to have RCT, DJD or frozen shoulder

Glenohumeral Instability

- 50% of all major dislocations
 - Anterior 95%
 - Direct blow to externally rotated, abducted humerus
 - Fall on outstretched arm
 - Posterior 2-4%
 - Inferior (luxatio erecta) 0.5%
- Age at initial dislocation is prognostic
 - Recurrence of 55% in those 12-22 years
 - 37% in those 23-39 years
 - 12% at 30-40 years
Glenohumeral Instability

- Physical exam
 - Apprehension test
 - Anterior instability
 - Reduction sign
 - Sulcus sign
 - Inferior instability
 - Sensorimotor
 - Sensation over deltoid/fire deltoid
 - Generalized ligamentous laxity
 - “Double jointed”

Throwing Athlete

- Tremendous kinetic energy through shoulder
 - Proper wind up and follow through is critical
- Anterior shoulder pain
 - Impingement
 - Subtle instability
 - May be primary instability with secondary impingement
- Aggressive rehab
 - Relative rest, selective stretching, strengthening of cuff and scapular stabilizers
Glenohumeral Instability

- Most commonly dislocated joint
- Age at initial dislocation is prognostic
 - Recurrence rates of 55% in 12-22 years
 - 37% in those 23-29 years
 - 12% at 30-40 years
- Fall on flexed elbow with adducted arm or by direct axial load to externally rotated humerus
- Traumatic dislocation more common in adolescent than in pediatric population
 - Consider ligamentous laxity if unstable in peds patient

Acromioclavicular Injuries

- AC separation
 - Fall onto tip of shoulder (acromion)
 - Classified as to degree of separation I-VI
 - Low grade treated with sling
 - High grade dislocations may need repair
 - Obvious deformity and instability
 - Tender over AC joint and pain with adduction

Acromioclavicular Injuries

- Radiographs
 - AP views of both shoulders
 - Stress views may be helpful to differentiate incomplete vs complete disruption
 - Low grade separation (subluxation) show little or no displacement
 - Grade III and higher injuries show increased distance between acromion and clavicle and between clavicle and coracoid
Acromioclavicular Injuries

• Treatment
 – Low grade injury
 • Sling for few days only
 – High grade injury
 • Require surgical repair
 • Grade III injury may be treated conservatively in the low demand individual
Scoliosis

- Lateral curvature of the spine of > 10°
 - Small curves are not scoliosis
- Thoracic or lumbar spine (occasionally both)
 - Associated vertebral rotation with kyphosis or lordosis
- May be congenital
 - Vertebral anomalies
- Commonly idiopathic
- May be secondary to other disorder
 - Cerebral palsy
 - Muscular dystrophy
 - Myelomeningocele

Idiopathic Scoliosis

- Develops in early adolescence
 - Male = female in curves < 10°
 - Female 7X more likely to have significant, progressive curve requiring treatment
 - Progression typically girls at age 10-16 years
 - Not associated with pain
 - Pain suggests primary condition and requires further evaluation

<table>
<thead>
<tr>
<th>Curve size</th>
<th>Girls:Boys</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-10°</td>
<td>1:1</td>
</tr>
<tr>
<td>11-20°</td>
<td>1.4:1</td>
</tr>
<tr>
<td>>21°</td>
<td>5.4:1</td>
</tr>
</tbody>
</table>

Scoliosis

- Physical exam
 - Forward bending test
 - Observe from behind
 - Elevation of rib cage, scapula or paravertebral muscle mass positive finding
 - Also assess
 - Skin
 - Leg length
 - Feet alignment
 - Neuromuscular status
 - Beware
 - Left side thoracic curves have high incidence of spinal cord abnormalities

- May be congenital
 - Vertebral anomalies
- Commonly idiopathic
- May be secondary to other disorder
 - Cerebral palsy
 - Muscular dystrophy
 - Myelomeningocele

- Develops in early adolescence
 - Male = female in curves < 10°
 - Female 7X more likely to have significant, progressive curve requiring treatment
 - Progression typically girls at age 10-16 years
 - Not associated with pain
 - Pain suggests primary condition and requires further evaluation

<table>
<thead>
<tr>
<th>Curve size</th>
<th>Girls:Boys</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-10°</td>
<td>1:1</td>
</tr>
<tr>
<td>11-20°</td>
<td>1.4:1</td>
</tr>
<tr>
<td>>21°</td>
<td>5.4:1</td>
</tr>
</tbody>
</table>
Scoliosis

Is there a curve?
Is there a curve?

Is the curve structural?
Is the curve structural?

- Postural curves
 - Pain
 - Leg length inequality
 - Behavioral

Is the Curve Idiopathic?

- Congenital
 - Vertebral anomalies
- Neuromuscular
 - Cerebral palsy
 - Myelomeningocele
 - Muscular dystrophy
 - Polio
- Miscellaneous
 - Post surgical
 - Marfan syndrome
 - Trauma

Beware!

- Unusual curves
 - Left thoracic curves
- Unusual symptoms
 - Significant pain
 - Radiculopathy
- Unusual findings
 - Neurologic deficit
 - Skin changes
 - Hair patches
 - Asymmetry of lower extremities
Slipped Capital Femoral Epiphysis

- SCFE
 - Sudden or gradual displacement of femoral head through physis.
 - Typically during adolescent growth spurt.
- Predisposing factors
 - Obesity
 - Male gender
 - Sports
 - Femoral retroversion
 - Hypothyroidism and growth hormone deficiency

Slipped Capital Femoral Epiphysis

- Mean age at presentation
 - 12 years for girls (range: 10-14 years)
 - 13 years for boys (range: 11-16 years)
 - Onset before or after typical range is associated with endocrinopathy.
- Bilateral involvement seen in 40-50%
 - Not always affected simultaneously
- May be acute or chronic
 - Early detection and treatment imperative

Slipped Capital Femoral Epiphysis

- Symptoms
 - Pain worse with activity
 - Localized to anterior thigh or knee.
 - May be unable to bear weight
- Exam
 - Loss of hip internal rotation
 - Further reduction of internal rotation with hip flexion.
 - Loss of internal rotation when hip is flexed to 90°
 - Slip is always posterior and often medial
 - Loss of abduction and extension
 - Affected extremity usually shorter by 1-3 cm
Slipped Capital Femoral Epiphysis

- Diagnostic tests
 - AP and frog-leg lateral radiographs of pelvis
 - AP view may appear normal
- Severity important in treatment and prognosis
- Severity is estimated by the percentage of femoral neck left exposed:
 - Mild - less than 25%
 - Moderate - 25-50% is moderate
 - Severe - more than 50%
Slipped Capital Femoral Epiphysis

- **Treatment**
 - In situ stabilization
 - Pin in current position to prevent progression.
 - If unstable may require urgent ORIF
 - Severe deformity may require realignment osteotomy.
 - Chronic painful limp despite treatment

Female Athletes

- Desire to change weight
- Menarche, menstrual regularity and LMP
 - Eating disorders and amenorrhea
 - Osteopenia and osteoporosis
- Sudden cardiac death less likely in females
- Females more likely
 - Patellofemoral syndrome, foot disorders, stress fractures, ACL rupture

Case #1

- 16 year old female with acute onset knee pain while playing basketball today
- Pain and immediate swelling after coming down from rebound
- Unable to bear weight
- Felt a pop at the time of injury
Case #1

- **Exam**
 - Large effusion
 - Anterior drawer (knee flexed at 90°) negative
 - Anterior translation of tibia in relation to femur
Anterior Cruciate Ligament Tear

- Primary anterior and rotational stabilizer
- May be other associated injuries
- Typically non-contact deceleration injury
- One third to ½ report a “pop” & immediate effusion
- Painful ROM and inability to bear weight

Anterior Cruciate Ligament Tear

- Diagnostic tests
 - Plain films may show avulsion of tibial insertion but usually normal
 - MRI shows discontinuity of ligament
 - Arthrocentesis
 - Can be performed to relieve pain and assess hemarthrosis
 - Fat globules in aspirate suggest fracture
 - Blood may clot after 24 hours making aspiration difficult

Anterior Cruciate Ligament Tear

- Treatment
 - Varies according to age, activity level and associated injuries
 - Initial TX should include PRICE followed by WBAT, ROM and isometric quad exercises
 - Re-examination 10-14 days post injury
 - Rehab and functional bracing less favorable in young, active patient
 - ACL reconstruction
- Prevention with proper training
Case #2

- 15 year old male with medial knee pain and occasional clicking
- Most often with “plant and pivot” activity
- Symptoms are intermittent
- Knee “gives out”
- Knee swells after clicking or buckling
- Effusion improves with NSAIDs

Case #2

- Clinical symptoms
 - Minimal or no trauma
 - Gradual onset of effusion and stiffness
 - Mechanical symptoms
 - Reports of instability
- Exam
 - Small to moderate effusion
 - Medial joint line tenderness
 - Pain with full flexion and extension
 - Pain and popping on McMurray test

Meniscal Tear

- Treatment
 - PRICE
 - Course of NSAIDs at anti-inflammatory dose
 - Gradual return to activity
 - Recurrent catching, popping, locking will likely require surgical debriedment
 - May consider injection in older patient
- Imaging
 - Wt bearing films with notch and sunrise views
 - MRI
- Arthroscopy for partial menisectomy vs repair
Case #3

- 12 year old male with knee pain after collision on soccer field
- Knee forced into valgus
- Edema over several hours after the injury
- Pain with weight bearing
- Unable to fully flex knee

Collateral Ligament Tear

- Traumatic partial or complete tear
- May occur with meniscal, ACL, PCL tears

Collateral Ligament Tear

Tendon may be tender along entire course
- Apply varus stress
- Apply valgus stress
- Classification based on amount of joint space opening under stress

Collateral Ligament Tear

- Treatment
 - Typically conservative for isolated tears
 - Must rule out ACL, PCL and meniscal tears
 - PRICE
 - Hinged brace in higher grade tears
 - Weight bearing as tolerated with crutches
 - Analgesia with acetaminophen or tramadol
 - NSAIDs probably OK
 - PT includes early ROM, quad strength and gait training
 - Surgical repair if other ligaments torn

Patella/ quadriceps tendonopathy

- Common in adolescent athlete
 - Sinding-Larsen-Johansson Disease in preadolescents
- Overuse or overload syndrome
- Associated with jumping sports
- May occur with erratic exercise habits
- Weight gain may play role
- Anterior knee pain
- Pain with sitting, squatting or kneeling
- Climbing stairs often increases pain

Res: Patella/ quadriceps tendonopathy

- Exam
 - Tender at inferior or superior patella pole
 - May be mild edema
 - No joint effusion
 - Fullness of infrapatellar bursa
 - AROM is normal but painful
 - Quadriceps atrophy if longstanding condition
 - Rule out other soft tissue conditions
Patella/quadriceps tendonopathy

- Treatment is primarily symptomatic
 - Period of rest
 - Few days to a few weeks
 - Consider brief immobilization
 - Analgesia with acetaminophen or tramadol
 - PT with focus on ROM, extensor stretching and quadriceps strength
 - Ultrasound or iontophoresis may help
 - Knee sleeve with patella cutout or patella tendon strap

Sever Disease/Calcaneal Apophysitis

- Repetitive stress and micro trauma
- Posterior heel pain and may have limp
- Apophysis closes
 - 9 years in female
 - 11 years in male
- Tenderness on heel squeeze
- Radiographs not diagnostic
 - Irregularity and sclerosis are normal

Sever Disease/Calcaneal Apophysitis

- Differential Diagnoses
 - Achilles tendinopathy
 - Can be associated with reactive arthritis or seronegative spondyloarthropathies
 - Infection
 - Likely unilateral, local swelling, elevated ESR
 - Tumor
 - Likely unilateral, local swelling, night pain
Sever Disease/Calcaneal Apophysitis

- Treatment
 - Activity modification
 - Heel lift (short term)
 - Achilles stretching
 - Ice after activity
 - Casting if severe
 - Consider infection or neoplastic disease if recalcitrant

Ankle Sprain

- More than 25,000 sprains daily
- Residual symptoms in nearly 40%
- Lateral ligaments most often affected
 - Inversion injury
 - Tibiofibular syndesmosis injury in "high" ankle sprain
- Subtalar joint may also be injured
 - Interosseous ligament tear
- Medial deltoid injury may also occur
 - Less common
 - Typically associated with eversion injury

Ankle Ligaments

[Image of ankle ligaments]
Ankle Sprain

• Clinical symptoms
 – Pain over injured structures
 – Swelling
 – Loss of function
 – May report a “pop” in severe sprain
 • Followed by immediate swelling and inability to bear weight
 – May report history of previous sprain

Ankle Sprain

• Exam
 – Circumferential ecchymosis and swelling
 – Tenderness of affected structures
 • Palpate medial and lateral malleoli, base of 5th metatarsal and navicular
 – Special tests
 • Anterior drawer

Ankle Sprain

• Special tests
 – Squeeze test
 • Compress tibia and fibula at midcalf
 – External rotation test
 • Dorsiflex ankle and externally rotate foot
 – Positive test results in pain at distal tibiofibular syndesmosis
• Subtalar joint injury may show tenderness and ecchymosis of medial hindfoot
Ottawa Rules

• Tenderness at distal fibula or tibia
• Tenderness at 5th MT base or navicular
• Inability to bear wt. immediately and in clinic

Ankle Sprain

• Differential Diagnosis
 – Fracture of distal fibula, base of 5th metatarsal, medial malleolus, calcaneus, talus (tender over structure, apparent on radiograph)
 – Proximal fibula fracture (Maisonneuve- proximal fibula, deltoid TTP and positive squeeze test)
 – Peroneal tendon tear or subluxation (muscle weakness on eversion, may report repeated popping)
 – Osteochondral fracture of talar dome (evident on radiographs, MRI or bone scan)

Ankle Sprain

• Treatment
 – Analgesia with acetaminophen or tramadol
 – PRICE with vigorous elevation (toes above nose)
 – Consider cast or cast boot for 2 weeks if severe
 – WBAT (crutches as needed for a few days)
 – Home therapy program
 • Range of motion
 • Stretching exercises after 2 weeks
 • Strengthening and proprioception exercises
 – Stirrup splint for 6 weeks or more
 – Formal physical therapy!
 • Chronic instability common after incomplete rehab
References/Resources

• Standardized preparticipation athletic evaluation form can be downloaded from the American Academy of Pediatrics [http://www.aap.org/en-us/professional-resources/practice-support/Pages/Preparticipation‑Physical‑Evaluation‑Forms.aspx]
• Maughan, M. Ankle sprain. In: UpToDate, Patrice, E. (Ed), UpToDate, Waltham, MA, 2015