<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome from the Chair</td>
<td>3</td>
</tr>
<tr>
<td>Biostatistics Overview</td>
<td>4</td>
</tr>
<tr>
<td>Mission and Vision Statement</td>
<td>4</td>
</tr>
<tr>
<td>Key Personnel</td>
<td>5</td>
</tr>
<tr>
<td>Department/Faculty Meetings</td>
<td>6</td>
</tr>
<tr>
<td>Orientation and Advising</td>
<td>7</td>
</tr>
<tr>
<td>Guideline for Awarding Tuition Remission</td>
<td>9</td>
</tr>
<tr>
<td>BSPH Degree</td>
<td>11</td>
</tr>
<tr>
<td>MPH Degree</td>
<td>15</td>
</tr>
<tr>
<td>MS Degree</td>
<td>19</td>
</tr>
<tr>
<td>DrPH Degree</td>
<td>23</td>
</tr>
<tr>
<td>PhD Degree</td>
<td>32</td>
</tr>
<tr>
<td>Supporting Programs</td>
<td>41</td>
</tr>
<tr>
<td>Examinations</td>
<td>42</td>
</tr>
<tr>
<td>Honor Code – Working Independently</td>
<td>48</td>
</tr>
<tr>
<td>Master's Papers (MS/MPH Students Only)</td>
<td>49</td>
</tr>
<tr>
<td>Guidelines for Dissertation</td>
<td>51</td>
</tr>
<tr>
<td>(PhD/DrPH or MS student who opts to write a thesis)</td>
<td></td>
</tr>
<tr>
<td>Policies for Changing Degree Programs</td>
<td>56</td>
</tr>
<tr>
<td>Graduate Teaching Assistants</td>
<td>58</td>
</tr>
<tr>
<td>Departmental Library and Publications</td>
<td>64</td>
</tr>
<tr>
<td>Biostatistics Courses</td>
<td>65</td>
</tr>
<tr>
<td>Faculty Interests</td>
<td>71</td>
</tr>
<tr>
<td>Program Competencies</td>
<td>75</td>
</tr>
<tr>
<td>Lists of Important Web Sites</td>
<td>96</td>
</tr>
<tr>
<td>Calendars Fall 2017/Spring 2018 and UNC Academic Calendars</td>
<td></td>
</tr>
<tr>
<td>Department Checklist/Curvita</td>
<td></td>
</tr>
<tr>
<td>UNC Graduate School Handbook</td>
<td></td>
</tr>
<tr>
<td>Graduate School Forms</td>
<td></td>
</tr>
<tr>
<td>UNC Graduate School and Student Life</td>
<td></td>
</tr>
<tr>
<td>Residency</td>
<td></td>
</tr>
<tr>
<td>Cost to attend and funding</td>
<td></td>
</tr>
<tr>
<td>University Registrar</td>
<td></td>
</tr>
<tr>
<td>Departmental Committees and Members 2017-18</td>
<td></td>
</tr>
<tr>
<td>Graduation Information and Deadlines</td>
<td></td>
</tr>
</tbody>
</table>
Welcome from the Chair

Scientists in nearly all disciplines collect quantifiable data. We biostatisticians, working with our scientist colleagues, develop methods to optimally collect and analyze the data from the many types of studies conducted in the health sciences. The field of biostatistics is thus at the cutting edge of all new developments in the health sciences. The Department of Biostatistics at the University of North Carolina is proud to be one of the leading academic research departments of biostatistics in the world. For over sixty years, our department has been at the forefront of biostatistical and public health training and research.

The graduate and undergraduate training in our department is rigorous, challenging, and state-of-the-art. Our students take difficult and interesting courses in statistical theory and applications. At the same time, most of our students participate actively in the methodological and collaborative research that our faculty is conducting. Graduates of our program are prepared to be leaders in biostatistics, and a roster of over 1000 successful alumni illustrates this. Our graduates are faculty members at leading universities around the world, directors of units at the Food and Drug Administration, the National Institutes of Health and the Centers for Disease Control, and are leaders of research units in the pharmaceutical industry.

Essentially all of our graduate students receive at least partial financial support. This comes from our training grants in research in environmental biostatistics, research in statistical genomics and cancer, biostatistics and mental health neuroimaging and genomics and big data in knowledge, as well as from many research projects of our faculty. Faculty research projects currently funding graduate students include studies of cardiovascular health in the growing Latino population, new methods of producing and reading mammograms, treatments of HIV/AIDS, cancer, statistical genomics, environmental health, precision medicine, Big Data, clinical trials, translational medicine, and many others too numerous to list here.

As you can see from this partial list of research projects, our faculty is very actively involved in important and timely research. At the same time, they are excellent teachers and several of our faculty members have won teaching awards given by the Gillings School of Global Public Health and the University.

Our faculty also value and enjoy working with students one-on-one on research projects, and many of our students co-author several peer-reviewed publications before they graduate.

I personally look forward to getting to know you better in the coming years and wish you the best of success.

Michael R. Kosorok, Ph.D.
Chair of Biostatistics
Department overview

The Department of Biostatistics in the University of North Carolina Gillings School of Global Public Health stands as one of the best departments of its kind in the world. The Department was established in 1949 with the goals to advance statistical science and, ultimately by its application, to improve human health. To achieve these goals, the Department of Biostatistics offers training and research programs to develop and apply innovative statistical methods to problems of human health and disease, including basic biomedical sciences.

Mission Statement

Our mission is to forge dramatic advances in health science research that benefit human health in North Carolina, the US, and globally through the development of profound and paradigm-shifting innovations in biostatistical methodology and the thoughtful implementation of biostatistical practice to solve public health problems.

We bring about positive, sustainable changes in health by:

A. Supporting excellence in biostatistical practice by conducting theory and methods research of clear relevance to practice

B. Promoting sound application of new and existing statistical methods

C. Improving biostatistical education at the undergraduate and graduate levels

D. Working with undergraduate colleges to promote biostatistics as a discipline for graduate studies and a professional career

E. Anticipating and meeting the learning needs of our students

F. Using the tools of our discipline to enhance human welfare through collaboration in research with colleagues in the biological and health sciences

G. Seeking opportunities to advance the biostatistics profession.

Goal

- Our goal is to be a world leader in statistical research and statistical practice for the purposes of improving the public's health, improving biostatistical education, and advancing the biostatistics profession.
ADMINISTRATIVE PERSONNEL

Department of Biostatistics

Chair – Michael R. Kosorok, kosorok@bios.unc.edu
Vice Chair – Jianwen Cai, cai@bios.unc.edu
Director of Undergraduate Admissions – Jane Monaco, jmonaco@bios.unc.edu
Director of Graduate Admissions – Chirayath M. Suchindran, suchi@bios.unc.edu
Director of Undergraduate Studies - Jane Monaco, jmonaco@bios.unc.edu
Director of Graduate Studies - Joseph G. Ibrahim, ibrahim@bios.unc.edu
Director, Biometric Consulting Laboratory - Gary G. Koch, bcl@bios.unc.edu
Interim Director, Collaborative Studies Coordinating Center – Ed Davis, davisce@email.unc.edu
Co-Directors, Carolina Survey Research Laboratory – Robert Agans, agans@unc.edu
and Donglin Zeng, dzeng@email.unc.edu
Director, Causal Inference Research Lab – Michael Hudgens, mhudgens@bios.unc.edu
Director, Center for Innovative Clinical Trials - Joseph G. Ibrahim, ibrahim@bios.unc.edu
Business Manager – Evie E. McKee, emckee@bios.unc.edu
Accounting – GRA Appointments, Terry Link, tlink12@email.unc.edu
Accounting – Training Grants, Travel Reimbursements, Debbie Quach, dquach@bios.unc.edu
Human Resources-Vera Bennett, bennett@bios.unc.edu
Administrative Assistant – Betsy S. Seagroves, bseagrov@bios.unc.edu
Network Administrator – Scott Zentz, support@bios.unc.edu

Student Services Managers
Surnames beginning A-M:
 Melissa C. Hobgood, mhabgood@bios.unc.edu

Surnames beginning N-Z/Undergraduates:
 Veronica P. Stallings, stallings@bios.unc.edu

Grant Directors
 Jason Fine - Biostatistics & Mental Health Neuroimaging and Genomics
 Joseph Ibrahim – Biostatics for Research in Genomics and Cancer
 Michael Kosorok - Big Data to Knowledge
 Haibo Zhou – Biostatistics for Research in Environmental Health
DEPARTMENT/FACULTY MEETINGS

At the beginning of each academic year, the Department Chairs decide the time and days of regular Departmental Meetings. Additional meetings may be called as needed.

All faculty members (Instructors and above) are eligible to vote at the regular Departmental Meetings.

The Agenda for each meeting is initiated by the Associate/Vice Chair and given to the Chair’s Administrative Assistant for completion. Items to be put on the Agenda should be given to the Administrative Assistant one week before the meeting.

The Chair (or an appointed representative) presides over all meetings. In general, Robert's Rules of Order are followed in the conduct of the meetings.

A Faculty Meeting may be held when necessary to consider business of such a nature that students should not be present (for example, decisions with respect to Department-wide written examinations). Attendance is restricted to faculty.

Minutes are prepared by the Administrative Assistant and given to the Associate/Vice Chair for approval. Copies are distributed via-email along with the agenda in advance of the next meeting.

2017-2018 Department Meetings are scheduled on the following Thursdays, 2:00-3:30 PM

August 31 – Faculty Only
September 21
October 12
November 16
December 14
January 18
February 15
March 15
April 19
May 17
ORIENTATION AND ADVISING

ORIENTATION

At the beginning of the year, the Department Student Service Managers (SSM), with the help of the Directors of Undergraduate and Graduate Admissions, organize orientation meetings for all new students. At these meetings, students are introduced to members of the faculty and staff, as well as the Department Chair, Vice Chair, Associate Chair, and the Directors of Undergraduate and Graduate Admissions and Studies. Current information about the department, degree requirements, and departmental research activities are also provided.

APPOINTMENT OF ACADEMIC ADVISORS

The Director of Undergraduate Studies usually advises all undergraduates.

The Student Service Manager’s (SSM) office and the Director of Graduate Admissions (DGA) appoint faculty advisors for newly admitted graduate students. The selections are made with consideration of such factors as interests of the students and faculty, any specialized fellowship support, and faculty commitments. Any request for change in advisor assignment should be directed to the (DGA) and/or your (SSM). The academic advisor advises students on departmental matters until replaced by the dissertation advisor for doctoral students or master’s paper advisor for master’s student.

DUTIES OF STUDENT SERVICES MANAGERS/REGISTRARS

Prior to the entry of new students, the (SSM) sends the advisors information about the backgrounds of their advisees and the degree program to which each advisee has been admitted. Before each registration, the (SSM) also sends the advisee a copy of the course schedule and other relevant registration material. At the start of the fall semester, the advisee is provided with a copy of the latest version of the Academic Information Manual (AIM). Subsequent meetings between the advisor and advisee should be arranged by them directly.

Student assignments are as follows: Students with last names that begin with the letters A-M are assigned to Melissa Hobgood. Students with last names that begin with the letters N-Z and undergraduates are assigned to Veronica Stallings. Please see the appropriate (SSM) for all your student needs. If your (SSM) is not available and your request is not urgent, please send an email. If there is urgent need, by all means see either.

DUTIES OF ADVISORS

The primary responsibilities of the faculty member appointed as advisor for a newly admitted student are to provide initial guidance regarding the academic program of the advisee and to carry out selected academic functions (such as assistance regarding options for practical training or for a research project) related to completion of academic program requirements. Also, for MPH students, a great deal of flexibility in course selection is possible (see section on the MPH degree program).

However, after the first semester, primary responsibility should shift to students for updating plans to satisfy their degree programs and for discussing such plans with their advisors. Students are expected to meet with their advisor at the beginning of each semester to discuss course selection and academic progress.
Advisors are specifically expected to confer with their advisees in all selections of courses, and to sign appropriate forms showing their approval of the course plans (as well as any subsequent course additions or drops) of their advisees.

In carrying out their responsibilities, advisors need to keep “up-to-date” on the academic and related requirements of the degree programs for which they are advising students, and to monitor the progress of their advisees in meeting these requirements.

Every student is responsible for keeping an updated degree checklist. This should be done with their advisor at the beginning and end of each semester. In the final year, the checklist must be verified and signed off by the Director of Graduate Studies. You will also be responsible for completing with your advisor the BIOS Annual Graduate Student Progress & Goals report in your 2nd year or beyond of your graduate students. This must be completed with and signed by your academic advisor or doctoral adviser if you are registered for dissertation.

The academic advisor is not committed to continuing as the advisor of the Master's paper or doctoral dissertation.

ABSENCE OF ADVISORS

Advisors who have to be away during registration, or for any length of time during the year, should make arrangements, in consultation with the Registrar, for another faculty member to meet with their advisees when they need faculty assistance. If such arrangements are not made, changes in a student's program may be made at the discretion of the Director of Graduate Studies and the Registrar.
Department of Biostatistics Guidelines for Awarding Tuition Remissions

*Students who receive a stipend through UNC as a Graduate Research Assistant and earn the minimum amount as set by the Graduate School become eligible for tuition support (Tuition Remission).

The following criteria will be used by the Department of Biostatistics (and followed by the Chair, Directors of Graduate Admissions and Studies, and by the Department Registrar) for making decisions about Tuition Remission awards. All such awards are, of course, subject to the availability of funds, which are allocated by the Graduate School.

When possible, approximately five Tuition Remissions may be awarded to new students, and the remaining available Tuition Remissions will be awarded to eligible returning students. Each award to a new student will be for one academic year (fall and spring). Returning student Tuition Remission eligibility is determined on a semester basis and is contingent upon:

(a) full time student status;
(b) high quality performance in course work;
(c) high quality performance in GRA activities;
(d) compliance with guidelines set by the Graduate School.

Enrollment Requirements

Doctoral Students:
Full enrollment is required (9 hours or more) during the first two years of graduate study. Thereafter, once all other degree requirements have been satisfied, students must enroll for at least 3 hours of BIOS 994. Credit hours of courses that are not required for your degree will not be counted towards tuition remission.

Master's Students:
Full enrollment is required (9 hours or more) during the first three semesters of graduate study. Thereafter, once all other degree requirements have been satisfied, students must enroll for at least 3 hours of 992.

All students must remain appropriately enrolled for the entire semester to be eligible for, and to retain tuition remission or an in-state tuition award for the relevant semester.

Dropping below the minimum enrollment requirement during the semester will result in the loss of tuition remission, and the financial responsibility rests on the student.

Duration of Support

1. Students in terminal masters' programs are eligible for tuition remission and/or in-state tuition awards from the designated tuition fund for four semesters;
2. Doctoral students (or students in masters then doctoral sequence programs) are eligible for tuition remission and/or in-state tuition awards from the designated tuition fund for up to ten semesters. However, the maximum semesters of eligibility may depend on the availability of funds from the Graduate School.
3. A student who completes a degree in one UNC academic program, then enrolls in another UNC academic program or changes academic programs without receiving a degree, is only eligible for the maximum semesters of eligibility as noted above during their enrollment at the university, or no more than ten semesters.
4. Students taking courses that are required for their degree will be eligible to receive remission to cover those credit hours. Courses of interest or courses recommended outside of Biostatistics that are not required for degree completion will not be covered by tuition remission and are the financial responsibility of the student.

Criteria indicating lack of excellent academic progress include poor academic performance (e.g., as indicated by the grade of F or L in any course) and/or the inability to maintain full time student status (except in certain circumstance such as a major illness or personal hardship).
BACHELOR OF SCIENCE IN PUBLIC HEALTH (BSPH)

OBJECTIVES OF THE PROGRAM
The Bachelor of Science in Public Health program is designed for students who have strong quantitative abilities and an interest in applications of math, statistics, and computer programming to health-related issues. The program prepares students for entry-level professional statistical and programming careers, and provides a firm academic base for subsequent studies in biostatistics, medicine and other fields.

Upon satisfactory completion of this course of study the student will be able to:

1. perform a descriptive and/or inferential analysis of an uncomplicated dataset using software;
2. interpret the results of the analysis for a lay audience;
3. demonstrate understanding of elementary statistical theory;
4. identify an appropriate design for an experiment or observational study in the health sciences;
5. demonstrate sufficient quantitative background knowledge for the study of biostatistics, including calculus, linear algebra and discrete mathematics;
6. demonstrate an understanding of the foundations of public health, including the physical, biological, and social behavioral/factor which affect the health of the community and systems for health services delivery.

ADMISSION REQUIREMENTS
The first two years of the four-year course of study are usually completed within UNC-CH's General College. Students typically apply to the BSPH Biostatistics Program in February of their sophomore (or second) year for fall admission in their junior (or third) year. Admission requirements include:

• Completion of MATH 231, 232, and 233 before an admission decision can be made. Thus, Math 233 must be completed by May of the sophomore (or second) year.
• Completion of BIOL 101 and BIOS 101L and (COMP 110 or COMP 116) before entering the program in the Fall of the junior (or third) year.
• Completion of at least 60 credits and the vast majority of their General College requirements before entering the program in the Fall.
• A Minimum GPA of 3.2.

The application consists of a transcript, two letters of recommendation (at least one recommendation from a quantitative/math person), and a personal statement. Applications are submitted completely online. Prospective students should familiarize themselves with program prerequisites early in their General College studies and are encouraged to discuss their plans with the Director of Undergraduate Studies (Dr. Jane Monaco). More information here: http://sph.unc.edu/bios/faqs-undergraduates-2/

PROGRAM REQUIREMENTS

- BIOL 201 or 202; (both these courses have a prerequisite of CHEM 101)
- BIOS 500H, 511, 545, 550, 646, 668 (or 662) and 691;
- ENVR 600; EPID 600; HBEH 600; HPM 600
- MATH 381, 521 (or 528), and 547;
- A minimum of three electives outside the Gillings School of Global Public Health.

BSPH students are required to earn a grade of C (or higher) for all above required courses. Advanced students who wish to double major or have a minor are encouraged to take some of the required courses (such as Math 381, Biol 201 (or 202), Math 547) in their freshman and sophomore years in order to allow flexibility of scheduling in their last two years. Bios 500H can be taken in the freshman or sophomore years to introduce interested students to the discipline of biostatistics and to allow flexibility of scheduling in the junior and senior years.
Students must also meet UNC-CH graduation requirements including: completion of at least 120 semester hours; a 2.0 (C) average on all work attempted at UNC-CH; at least 45 credit hours must be earned from UNC-CH courses; at least 24 of the last 30 credit hours applied to degree requirements must be earned from UNC-CH courses. See the Undergraduate Bulletin for complete details.

Academic achievement is recognized at graduation with the designations of Distinction (Overall GPA ≥ 3.5) and Highest Distinction (Overall GPA ≥ 3.8).

SENIOR HONORS PROJECT IN BIOSTATISTICS

A senior honors project is intended for the small number of undergraduates who choose to complete original research. Attempting an honors project requires a substantial time commitment, dedication and the ability to work independently. The senior honors project is not designed to reward academic achievement. However, students must have a grade point average of 3.3 or higher at the end of the semester preceding the semester when they intend to begin honors research work and maintain a GPA of at least 3.3 while completing the project.

Faculty member availability to guide the student in their honors work governs whether a student can begin a research project. Students are responsible for finding a biostatistics faculty member to direct their honors project.

Students attempting an honors project must enroll in at least six credit hours of acceptable research coursework (Usually Bios 693H- 3 hours in the fall and Bios 694H - 3 hours in the spring). As part of this coursework, students carry out a research project, prepare a paper based on the project, and give an oral presentation on their honors research.

Senior honors papers are reviewed by a committee of three individuals which include the primary biostatistics faculty research advisor and usually at least one person from another department. The review committee is selected by the student and his/her research advisor after consultation with the Director of Undergraduate Studies.

To graduate with Honors, a student must complete the honors project including oral presentation and have a GPA of at least 3.3 at the end of the first semester of the senior year on (a) all courses taken at UNC-Chapel Hill and (b) the courses required for the biostatistics major.

To be eligible for consideration of Highest Honors designation, students must also have a GPA of at least 3.6 in (a) and (b) above. Evaluation of Honors vs. Highest Honors designation is made by a subcommittee of the faculty based on scholarly merit of senior honors project and student presentation.

More information is also available from the Director of Undergraduate Studies.

DUAL BSPH/MS DEGREE

OVERVIEW: A Dual BSPH/MS Degree is available for students who are interested in completing some of the MS in Biostatistics degree requirements while completing their undergraduate degree. The degree requirements for each degree are unchanged. The program identifies a coherent course of study to efficiently complete both degrees. The program is best suited for high achieving students who seek a terminal MS biostatistics degree. The Dual Degree does not guarantee completion after 5 years; some sample schedules span more than five years. Details and sample semester-by-semester curriculums are available from the Director of Undergraduate Studies.
ADMISSION: Briefly, interested students must be admitted to the BSPH program first. Students submit a ‘letter of interest’ approximately 9 months before entering the MS degree (for most students, in their junior (or third) undergraduate year). This letter should include a semester-by-semester plan for completing the BSPH degree in 8 (or less) total regular semesters, as well as their semester–by-semester plan for completing the MS requirements. The letter is submitted to the Director of Graduate Admissions and Director of Undergraduate Studies. If approved, the student will be encouraged to pursue formal admission to the MS program.

BENEFITS: One benefit of the Dual Degree is the additional number of hours that can be transferred in to MS degree (20% vs. 30% Rule). The requirement of 36 hours of MS coursework remains unchanged. In general, any student is allowed to transfer up to 20% of the total hours required for the master’s degree (20% of 36 = 7 hours) with approved coursework (for example, applicable graduate courses taken while an undergraduate) provided the course did not count toward the requirements of the undergraduate degree (20% Rule: http://gradschool.unc.edu/handbook/pdf/handbook.pdf p. 3) [For example, if BIOS 660 and 661 are taken while an undergraduate, those hours can be transferred into the MS graduate program for any student because those courses are not required for the BSPH.] Students in the Dual BSPH/MS may transfer in a maximum of 10 hours credit (30% of 36 hours) of approved coursework taken while an undergraduate, provided those hours do not fulfill BSPH requirements. (30% Rule: http://gradschool.unc.edu/pdf/DualBachelorsMastersPrograms102010.pdf),

Another benefit of the Dual Degree (or taking any graduate coursework as an undergraduate) is added flexibility to the MS Degree; because some of the required graduate coursework is completed as an undergraduate, students have additional flexibility to complete the 36 MS hours with other approved coursework.

PLANNING: Planning ahead is critical for students interested in the Dual Degree program; students are encouraged to consult with the Director of Undergraduate Studies early in their undergraduate career. Students interested in the BSPH/MS Dual Degree program are encouraged to apply to the BSPH program (not the Dual BSPH/MS Degree) in February of their freshman year and begin coursework in Biostatistics by their sophomore year, including BIOS 511 and BIOS 500H. Students are also encouraged to take required math courses (MATH 381 (Discrete Math), MATH 547 (Linear Algebra),...) early in their undergraduate program. Early preparation will allow students to have sufficient prerequisite courses to take BIOS 660, BIOS 661, BIOS 662 and BIOS 663 in their 4th year in preparation for MS qualifying exams at the beginning of their 5th year.

NOTES: Financial considerations may play a role regarding whether the dual BSPH/MS is a good fit for a student. Some students may prefer to retain undergraduate status for eight semesters because of undergraduate scholarships. Other students may prefer to transition to graduate student status earlier because of the potential to obtain graduate funding. Other considerations include a student’s readiness to commit to a terminal master’s degree early and preference for depth vs. breadth in undergraduate study.

TYPICAL BSPH BIOSTATISTICS CURRICULUM

FRESHMAN-SOPHOMORE YEARS Approximately 60 credit hours including:

BIOL 101, 101L: Principles of Biology and its Laboratory
COMP 110 or 116: Introduction to Programming
MATH 231: Calculus of Functions of One Variable I
MATH 232: Calculus of Functions of One Variable II
MATH 233: Calculus of Functions of Several Variables

Calculus series must be completed before a student can be admitted (by May of sophomore year)
Completing all the General College requirements is recommended in the first two years
See Director of Undergraduate Studies in Biostatistics for complete details
JUNIOR- SENIOR YEARS Approximately 60 credit hours including:

FALL JR
BIOS 500H: Introduction to Biostatistics
BIOS 511: Introduction to Statistical Computing and Data Management (SAS)
MATH 381: Discrete Mathematics
HBEH 600: Health Behavior and Health Education
FREE ELECTIVE

SPRING JR
BIOS 545: Principles of Experimental Analysis (Multiple Linear Regression)
MATH 521: Advanced Calculus I or MATH 528: Math for the Physical Sciences
EPID 600: Principles of Epidemiology
FREE ELECTIVE
FREE ELECTIVE

FALL SR
BIOS 550: Basic Elements of Probability/ Statistical Inference I
BIOS 691: Field Observations in Biostatistics (1 credit hour)
MATH 547: Linear Algebra for Applications
ENVR 600: Intro to Environmental Sciences
FREE ELECTIVE
FREE ELECTIVE

SPRING SR
BIOS 664: Sample Survey Methodology
BIOS 668: Design of Public Health Studies
BIOL 201*: Ecology and Population Biology or BIOL 202*: Genetics
HPM 600: Health Policy and Management
FREE ELECTIVE

* Biol 201 and 202 have prerequisites of Chem 101.

Taking the biostatistics courses in the above order is recommended because they are offered Fall only/Spring only and may have prerequisites.

This ‘typical’ program assumes that a student does not have substantial AP credit and does not plan to double major. Many students are able to take the courses noted in the junior/senior year earlier, allowing the flexibility to double major or to pursue other opportunities.

Students in this degree program also develop core public health competencies as described in the Gillings Schoolwide Handbook. Please refer to the competency (matrix or matrices) at the end of this document to review the learning experiences through which students in the BSPH develop and attain these competencies.
MASTER OF PUBLIC HEALTH (MPH)

OBJECTIVES OF THE PROGRAM

The Master of Public Health (MPH) program is designed to prepare individuals who have at least one year of prior work experience at admission for positions that require knowledge of the broad field of public health as well as specialized knowledge of biostatistics.

Upon satisfactory completion of this program the student will have:

1. demonstrated an understanding of the foundations of public health, including the physical, biological, and social/behavioral factors which affect the health of the community, and systems for health services delivery [SPH core course requirements];

2. demonstrated an understanding of the elements of probability and statistical inference, including the fundamental laws of classical probability, descriptive statistics, discrete and continuous distributions, functions of random variables, sampling distributions, and ability to apply them to a variety of estimation and hypothesis testing situations [BIOS 545, 550, and possibly 660-661];

3. used computers for research data management (applying a defensible standard of documentation, archiving, protection of confidentiality, and audit trail) and for the analysis of data with standard statistical program packages [BIOS 511, also 842];

4. learned to develop an efficient design of an observational or experimental study in the health sciences [BIOS 668, 670];

5. gained successful experience in statistical consulting, including interaction with research workers in the health sciences, abstracting statistical aspects of substantive problems, and communicating the results to persons without specialized biostatistical training (as evaluated by the consultees) [BIOS 841/842];

6. written an adequate report related to the statistical aspects of a problem in the health sciences [BIOS 992].

ADMISSION REQUIREMENTS

Requirements for admission include:

1. An acceptable Bachelor's degree with mathematics training at least including univariate calculus.

2. At least 12 months of acceptable fulltime, relevant post-baccalaureate work experience in public health, with an option to substitute an acceptable prior advanced degree (such as an MD degree) for the experience.
TIME/RESIDENCE REQUIREMENTS

The Graduate School requires a minimum residence period of only two semesters for any Master's degree, but students in the MPH program will typically need two years to complete all MPH degree requirements. All requirements for the degree must be completed within five years of matriculation. See the following for information Please refer to the Graduate School Handbook located in the appendix for additional information.

COURSE REQUIREMENTS

The Graduate School requires at least 42 semester hours of course work. Completion of the total required coursework below may exceed 42 hours.

The Department of Biostatistics requires:

A. Basic Statistical Tools
 - BIOS 511, 545, 550, 662, and 664, except that any of these may be waived by the Director of Graduate Studies if the student has equivalent training.

(Note that univariate calculus is a prerequisite for BIOS 550). Additionally, BIOS 550 is an abbreviated and less theoretical version of BIOS 660/661, and it is designed specifically for the MPH program. BIOS 660 alone cannot serve as a substitute for BIOS 550, although the sequence BIOS 660-661 can.

B. Intermediate or Advanced Statistics
 - One course numbered above BIOS 664.

C. Practicum
 - BIOS 841, BIOS 842, BIOS 843 (2 semesters (credits) are required). BIOS 843 can only be taken 2nd year of study. Must complete online form to report practicum experience. Visit www.sph.unc.edu/careers. Online form located in the second paragraph of the NEWS section.

The practicum provides students on opportunity to apply the knowledge and skills being acquired through their coursework and further develop and demonstrate attainment of program competencies.

D. Master’s Paper or Thesis (BIOS 992)

E. Supporting Program:

The Gillings School of Global Public Health requires MPH students to take certain courses to insure that they are knowledgeable in the five basic public health content areas. There are several options for satisfying this requirement. For the standard option, students take one course in each of the core areas: epidemiology, biostatistics, health policy and management, environmental health sciences, and social and behavioral sciences. Our MPH Biostatistics students usually take ENVR 600, EPI 600, HPM 600, and HBEH 600 to fulfill this requirement and are exempted from taking an introductory biostatistics course because they take more advanced biostatistics course alternatives. More information about course substitutions and exemptions for the MPH Core Courses is available here: http://sph.unc.edu/students/academic-and-policies/. Students should consult their academic advisors about these alternatives.

NOTE 1: A maximum of six hours credit may be transferred from other institutions, or from Continuing Studies, in partial satisfaction of this 42 hour requirement. The transfer must be recommended by the Department and approved by the Graduate School. The residence requirement
is not affected. The necessary letter to the Graduate School is prepared by the Registrar. The Graduate School notifies the student directly by letter when action has been taken on the request for transfer of credits.

NOTE 2: A very flexible Master's program within the MPH program is available for students with a strong undergraduate background who are not seeking the stronger theoretical base of the MS degree. For example, UNC-CH BSPH Biostatistics graduates have completed BIOS 511, 550, 664, the core course requirements and the intermediate/advanced statistics requirement (#2 above) and will be exempted from this coursework. The hours for these courses, however, do not transfer in because they were used to fulfill the undergraduate major. The coursework requirements for these students for the MPH are to complete any remaining coursework (such as BIOS 662, 663), the practicum (#3 above), and the Graduate School's 42 hour requirement. Thus these students have much flexibility in selecting coursework and should work with their academic advisor in course selection depending on their interests and goals.

Bios 843:

Students in all graduate degree programs (MPH, MS, DrPH and PhD) are not allowed to miss more than two seminars in the semester for which they are registered for BIOS 843. If the student should miss more than two seminars, they will receive an automatic incomplete for the semester for which they are registered. To remove the incomplete, the student must makeup all missed seminars in the subsequent semester for which they are NOT registered for BIOS 843. The student must also write a one paragraph summary about each seminar and submit these summaries to the Director of Graduate Studies.

Electronic devices WILL NOT be allowed during seminar presentations.

Click for the Master of Public Health Checklist

* The basic written examinations are usually taken early in the Fall semester of the second year of the MPH program.

EXAMINATIONS

All candidates are required to pass the MPH Written Examination in Biostatistics at least one month before the degree is expected: See page 42 for details. No formal oral examination is required.

APPLICATION FOR GRADUATION

Students must notify the Graduate School of their plan to graduate by applying to graduate through your ConnectCarolina portal and eGraduation Central no later than the deadline shown in the University Registrar’s Calendar for the semester in which they expect to graduate. Applications should only be submitted when the student realistically intends to graduate that semester and are valid for one semester only. If a student does not graduate in the semester expected, s/he must submit another application for graduation in a future semester. The department registrar will also notify students via email of deadlines. See List of Web Sites at the end of for links.
MASTER'S PAPER

Each MPH candidate is required to earn at least three credits in BIOS 992 by writing a Master's Paper (a substitute for a Master's Thesis). This paper should show some synthesis of knowledge, and advance or contribute to the field of Public Health. The Master's paper is presented orally and submitted in a suitable written format: See page 51 for details.

Entering Master's students are strongly encouraged to identify a Master's paper topic by no later than the end of their first 12 months of residency.

It is recommended that the text of the Master's Paper should be 20-30 pages, excluding tables, figures, appendices, and bibliography. Students must provide faculty readers with a copy of the paper at least two weeks before graduation deadlines.

POLICY ON ENROLLMENT

The policy on enrollment for Master's Paper/thesis/doctoral dissertation only is stated below.

“Students who have completed all course work and residency requirements for their graduate degree program and who are using University resources (including faculty time) to conduct their Master’s paper/thesis/doctoral dissertation research will be required to register and pay tuition for at least 3 hours of Master’s paper/thesis/doctoral dissertation credit (992/993/994). As in the past, students must be registered in Master’s paper/thesis/doctoral dissertation (992/993/994) for 3 hours during the semester in which they complete their graduate work or are scheduled to receive their degree.”

“Students who are not using university resources may apply for a leave of absence. It should be emphasized, however, that students must be registered for at least 3 hours in order to receive a stipend, qualify for University Graduate Student Health Insurance, or maintain full-time student status for loan deferment or student visa status.”

Please refer to the Graduate School Handbook for additional information.
MASTER OF SCIENCE (MS)

OBJECTIVES OF THE PROGRAM

The Master of Science (MS) program is designed to provide research-oriented training in the theory and methodology of biostatistics and its applications to the solution of problems in the health sciences.

Upon satisfactory completion of this program, the student will have:

1. demonstrated an understanding of probability and statistical inference, including the fundamental laws of classical probability, discrete and continuous random variables, expectation theory, bivariate and multivariate distribution theory, maximum likelihood methods, hypothesis testing, power, and likelihood ratio, score, and Wald tests [BIOS 660, 661];

2. demonstrated ability to apply the elementary methods of statistical analysis, including those based on classical linear models and on nonparametric alternatives, involving categorical, discrete, normal, or ranked data, to problems of description, goodness of fit, univariate location and scale, bivariate independence and correlation, regression analysis, and the comparison of independent and matched samples possibly adjusting for covariables [BIOS 662, 663];

3. used computers for research data management (applying a defensible standard of documentation, archiving, protection of confidentiality, and audit trail) and for the analysis of data with standard statistical program packages [BIOS 511];

4. learned to develop an efficient design of an observational or experimental study in the health sciences [BIOS 841];

5. demonstrated basic knowledge of one or more substantive areas of statistical application in the health sciences [supporting program];

6. gained successful experience in statistical consulting, including interaction with research workers in the health sciences, abstracting statistical aspects of substantive problems, and communicating the results to persons without specialized biostatistical training (as evaluated by the consultees), and observed and evaluated nonacademic biostatistical programs in the Research Triangle area [BIOS 841, BIOS 691];

7. written an adequate report related to the statistical aspects of a problem in the health sciences, or a contribution to statistical methodology [BIOS 992].

ADMISSION REQUIREMENTS

Requirements for admission include an acceptable Bachelor's degree with mathematics training at least including multivariable calculus and linear algebra.

TIME/RESIDENCE REQUIREMENTS

The Graduate School requires a minimum residence period of two semesters, but the MS in Biostatistics usually requires about two years for completion. All requirements for the degree must be completed within five years of matriculation. Please refer to the Graduate School Handbook located in the appendix for additional information.
COURSE REQUIREMENTS

Students must complete at least 36 hours of coursework for the MS degree. Note that for students who do not exempt any required courses, the total credit hours for all required courses below is greater than 36 hours.

A. Basic Statistics
 • BIOS 511, 660, 661, 662, 663, 667, 680 and 691 are required.

B. Intermediate and Advanced Statistics
 • Six hours of course work numbered 664 or higher not including 667 and 680 in Biostatistics or equivalent in Statistics at UNC, or in Statistics at NCSU.

C. Practicum
 • BIOS 691, BIOS 841, BIOS 843 (2 semesters (credits) are required). BIOS 843 can only be taken 2nd year of study. In addition, each MS student may be required to grade up to two courses: See page 58 for details.

Bios 843:

Students in all graduate degree programs (MPH, MS, DrPH and PhD) are not allowed to miss more than two seminars in the semester for which they are registered for BIOS 843. If the student should miss more than two seminars, they will receive an automatic incomplete for the semester for which they are registered. To remove the incomplete, the student must makeup all missed seminars in the subsequent semester for which they are NOT registered for BIOS 843. The student must also write a one paragraph summary about each seminar and submit these summaries to the Director of Graduate Studies.

Electronic devices WILL NOT be allowed during seminar presentations.

D. Supporting Program
 • EPID 600 or 710 (or equivalent), plus SPHG 600 is required. See page 41 for details.

TIMING OF COURSEWORK: Typically, BIOS 511, 660, 661, 662 and 663 are first-year MS courses; BIOS 667, 680, 841, 843, 992, and BIOS electives (e.g., 664, 665, 668, 670, etc.) are usually second-year MS courses; supporting program courses can be taken at any time.

TRANSFERRING IN COURSE HOURS (20% Rule): A maximum of seven hours credit (20% of 36 hours) may be transferred from other institutions, or from Continuing Studies, or from courses taken at UNC-CH as an undergraduate in partial satisfaction of this requirement. Credit received for graduate-level courses taken as an undergraduate may be transferred into the MS program with approval provided the course did not count toward the requirements of the undergraduate degree. The transfer must be recommended by the Department and approved by the Graduate School. The residence requirement is not affected. The necessary letter to the Graduate School is prepared by the Registrar. The Graduate School notifies the student directly by letter when action has been taken on the request for the transfer of credits. More information can be found at http://handbook.unc.edu/coursecredit.html.

EXEMPTING COURSEWORK: Some students (for example, graduates of UNC’s BSPH Biostatistics program or students with a strong math/stat background) may be allowed to exempt a limited number of individual required courses on a case-by-case basis based on their previous coursework. For example, BSPH biostatistics students from UNC-CH have satisfied the requirement of BIOS 511, 691, 6 hours of credit at or above 664, EPID 600 and SPHG 600 (through completion...
of the five SPH core courses) and can exempt those courses. These students will still need to fulfill the remaining requirements including 36 hours of approved coursework. Thus these students gain flexibility in selecting coursework and should work with their academic advisor in course selection depending on their interests and goals.

Click for the Masters of Science Checklist

* Basic written examinations are usually taken early in the Fall Semester of the second year of the MS program

EXAMINATIONS

All candidates are required to pass the MS Written Examination. All candidates are required to take the examination after they have completed their first year in this Department: See page 42 for details. No formal oral examination is required (unless the student elects to write a Master's Thesis: see Master's Paper section).

APPLICATION FOR GRADUATION

Students must notify the Graduate School of their plan to graduate by applying to graduate through your ConnectCarolina portal and eGraduation Central no later than the deadline shown in the University Registrar’s Calendar for the semester in which they expect to graduate. Applications should only be submitted when the student realistically intends to graduate that semester and are valid for one semester only. If a student does not graduate in the semester expected, s/he must submit another application for graduation in a future semester. The department registrar will also notify students via email of deadlines. See List of Web Sites Page at the end for links.

MASTER'S PAPER

Each MS candidate is required to earn at least three hours of credit in BIOS 992 by writing a Master's Paper (a substitute for a Master's Thesis). This paper might consist of a theoretical exposition of a methodological topic in Biostatistics or Statistics, or it might describe in detail the analysis of data considered during the consulting component of the student's program. The Master's Paper is both presented orally and also submitted in a suitable written format. See page 51 for details. Alternatively, any MS candidate may elect to write a Master's Thesis in accordance with the regulations of the Graduate School; in this case, the candidate must also pass a formal oral examination. Entering Master's students are strongly encouraged to identify a Master's paper topic by no later than the end of their first 12 months of residency.

It is recommended that the text of the Master's Paper should be 20-30 pages, excluding tables, figures, appendices, and bibliography. Students must provide faculty readers with a copy of the paper and present their Master’s paper before graduation deadlines.

POLICY ON ENROLLMENT

The policy on enrollment for Master's Paper/thesis/doctoral dissertation only is stated below.

“Students who have completed all course work and residency requirements for their graduate degree program and who are using University resources (including faculty time) to conduct their Master’s paper/thesis/doctoral dissertation research will be required to register and pay tuition for at least 3 hours of Master’s paper/thesis/doctoral dissertation credit (992/993/994). As in the past, students must be
registered in Master’s paper/thesis/doctoral dissertation (992/993/994) for 3 hours during the semester in which they complete their graduate work or are scheduled to receive their degree.”

“Students who are not using university resources may apply for a leave of absence. It should be emphasized, however, that students must be registered for at least 3 hours in order to receive a stipend, qualify for University Graduate Student Health Insurance, or maintain full-time student status for loan deferment or student visa status.”

Please refer to the Graduate School Handbook for additional information.
DOCTOR OF PUBLIC HEALTH (DRPH)

OBJECTIVES OF THE PROGRAM

The Doctor of Public Health (DrPH) program is designed to prepare students who have at least one year of prior work experience at admission for positions of leadership in applied research related to health problems and delivery of statistical technical services in the health field. In order to accomplish this goal, the program ensures that students acquire: a thorough and broad knowledge of statistical techniques and their application to a range of health problems; a basic knowledge of public health and an area therein in which the student may specialize; suitable administrative and leadership experiences in applied research or technical assistance projects; and communication skills so that they can function effectively in a multidisciplinary environment.

Upon satisfactory completion of this program the student will have:

1. demonstrated an understanding of the foundations of public health, including the physical, biological, and social/behavioral factors which affect the health of the community, and systems for health services delivery [SPH core course requirements];

2. demonstrated ability to use state-of-the-art design and analysis methods to solve a wide variety of applied statistical problems in the health sciences, by successfully passing the DrPH Basic Written Examination in Biostatistics [https://www.bios.unc.edu/distrib/exam/];

3. learned advanced biostatistical techniques, including the ability to
 • design cost-effective surveys and experiments (including clinical trials) for collecting data on topics relevant to health, taking account of sampling error, measurement error, nonresponse, and other sources of bias and variability;
 • use advanced theory for estimation and statistical inference based on health data, including linear regression and mixed models; models for longitudinal discrete and continuous data, and survival models;
 • discern when standard methods are not appropriate, when nonparametric methods based on randomization and ranks may be substituted, or when new methods must be developed;

4. used computers for research data management (applying a defensible standard of documentation, archiving, protection of confidentiality, and audit trail) and for the analysis of data with standard statistical program packages;

5. carried out independent methodological research, including the writing of a scholarly dissertation and publishing papers based on this research in respected statistical journals;

6. gained successful practical experience in statistical consulting, including interaction with research workers in the health sciences, abstracting statistical aspects of substantive problems, and communicating the results to persons without specialized biostatistical training; if not outside academia, then this consulting experience can be obtained by serving in the Biometric Consulting Laboratory (BCL) or as a member of a university research project team.
ADMISSION REQUIREMENTS

1. An appropriate prior Bachelor’s or Master’s degree in Statistics, Biostatistics, or in a closely related field.

2. Prior mathematics training at least including multivariate calculus and linear algebra.

3. At least 12 months of acceptable fulltime, relevant post-baccalaureate work in public health, with an option to substitute an acceptable prior advanced degree (such as an MD degree) for the experience.

TIME/RESIDENCE REQUIREMENTS

Doctoral students are required to complete a minimum residence credit of four full semesters; at least two of the required four semesters of residence must be earned in contiguous (i.e., fall to spring or spring to fall) registration on this campus. Students attempting to obtain the DrPH degree simultaneously with another Graduate School degree must register full-time in the School Public Health for at least two semesters. All requirements for the degree must be completed within eight years of the time the student matriculated in the program. Please refer to the Graduate School Handbook located in the appendix for additional information.

COURSE REQUIREMENTS

The Gillings School of Global Public Health requires at least 18 semester hours in non-statistical courses relevant to Public Health, including EPID 600 or 710 (or an equivalent), as recommended by the student's committee and approved by the DGS. NOTE: These 18 hours must include the MPH core course requirements. The Department of Biostatistics requirements are as indicated below. Requirements (A), (B), and (C) may be waived for students who have had previous training or experience deemed equivalent by the Director of Graduate Studies (DGS). Courses counted toward the School of Public Health requirements, or taken at UNC prior to entry into the program, may be included in (D) and (E).

A. Mathematics (advanced calculus and linear algebra)
 - The student must take BIOS 672, BIOS 673, BIOS 762, and BIOS 767. This requires working knowledge of the material in MATH 416, 521, 577, and 547 at UNC-CH. A strong background in multivariable calculus is therefore necessary.

B. Statistical Computing and Data Management
 - BIOS 511 and BIOS 669 are appropriate. This is self-enforcing, however, since the DrPH Basic Written Examination, and all non-service courses in BIOS, assume that students have mastered the topics covered therein.

C. Basic Statistics
 - Elementary and intermediate probability, statistical inference, statistical methods, linear regression, sampling and categorical data. Required courses are: BIOS 662, BIOS 663, BIOS 664, BIOS 665, BIOS 672, and BIOS 673.
 - For first year DrPH students who took BIOS 660 and/or BIOS 661 as a Masters student, the requirement for BIOS 672 and/or BIOS 673 will be determined on a case-by-case basis and approved by the Director of Graduate Studies. In general, if the first year DrPH students took BIOS 660 and/or BIOS 661 more than two years ago as a Masters student, they will need to take BIOS 672 and/or BIOS 673 in the DrPH program. For first year DrPH students who previously took BIOS 660 and BIOS 661 less than two years ago and got a grade of H in BIOS 660 and/or BIOS 661, they may be exempt from BIOS 672 and/or BIOS 673. They should take elective
courses above BIOS 664 to replace the exempt courses. However, if such students received a grade lower than an H in BIOS 660 and/or BIOS 661, then they must take BIOS 672 and/or BIOS 673.

D. Advanced Statistics

- Required courses BIOS 762 and BIOS 767
- Electives

At least 9 credit hours of electives are required. Acceptable course include all those numbered at the 700-level in Biostatistics or in (Mathematical) Statistics at UNC-CH, and equivalent courses in Statistics at other institutions as approved by the Director of Graduate Studies (DGS).

NOTE: BIOS 762 and 767 are typically taken during the second year of study, following completion of BIOS 662, 663, 672 and 673 during the first year of study.

E. Supporting Program in Public Health

- At least 18 semester hours in non-statistical courses relevant to Public Health, including EPID 600 or 710 (or an equivalent), as recommended by the student's committee and approved by the DGS. NOTE: These 18 hours must include the MPH core course requirements.

F. Practicum

- BIOS 841
- BIOS 842. Part or all of this requirement may be waived, upon petition to the DGS, for students with considerable prior experience.
- BIOS 843 (4 semesters (credits) are required). BIOS 843 can be taken only if the student has taken the written qualifying exam.
- Must complete online form to report practicum experience. Visit www.sph.unc.edu/careers. Online form located in the second paragraph of the NEWS section.

NOTE: BIOS 841 should be taken before or concurrently with BIOS 842.

The practicum provides students on opportunity to apply the knowledge and skills being acquired through their coursework and further develop and demonstrate attainment of program competencies.

Bios 843:

Students in all graduate degree programs (MPH, MS, DrPH and PhD) are not allowed to miss more than two seminars in the semester for which they are registered for BIOS 843. If the student should miss more than two seminars, they will receive an automatic incomplete for the semester for which they are registered. To remove the incomplete, the student must makeup all missed seminars in the subsequent semester for which they are NOT registered for BIOS 843. The student must also write a one paragraph summary about each seminar and submit these summaries to the Director of Graduate Studies.

Electronic devices WILL NOT be allowed during seminar presentations.

G. Dissertation Registration

- All doctoral students must register for a minimum of 3 credit hours of dissertation work (BIOS 994).

H. Transfer of Credits

- A doctoral student may request transfer credit from another institution. Courses transferred are subject to examination at the time of the Doctoral Oral Examination. The Committee may recommend the transfer of both course and residence credit in its report to the Graduate School,
which has the final responsibility for approving the transfer. Transferred credit does not relieve the student of the residence requirement of at least one academic year of continuous full-time study, or the equivalent, at UNC-CH.
See http://gradschool.unc.edu/academics/resources/forms.html

A "Typical" DrPH program* (The program may vary by the student's background, area of specialization, and interests).

Click her for the Doctor of Public Health Checklist

** Basic written examinations are usually taken early in the fall semester of the second year of the DrPH program.

DEGREE EXAMINATIONS AND DISSERTATION

Basic Written Examination

Each DrPH student is required to pass the DrPH Basic Written Examination: This examination is usually taken at the end of the first or second year in the program depending on student’s prior obtained degree before entering the program. See page 42 for details.

Doctoral Committee

In the Department of Biostatistics, the Doctoral Committee combines the functions of two committees as specified by the Graduate School: (1) the Doctoral Oral Examination Committee, and (2) the Dissertation Committee.

After the candidate has entered the final stage of planned course work, has chosen a topic for DrPH dissertation research, and has been declared ready by the dissertation advisor, the student and advisor recommend the composition of the Doctoral Committee to the DGS for approval. The composition of each Doctoral Committee is to be approved in writing by both the chairperson of the Department and the DGS. An appropriate form to accommodate this approval process is available from the Departmental Registrar. This form will solicit information regarding the proposed dissertation topic. The student should first consult with the Registrar concerning completion of forms and acceptability of committee appointments.

No fewer than five persons shall constitute the Doctoral Committee. A majority of the members must be full members of the Graduate Faculty. Other members may be limited members of the Graduate Faculty or special appointees. The Committee must also include at least one representative of the supporting program in Public Health.

Preliminary Doctoral Examinations

In the Department of Biostatistics, it is customary to combine the Doctoral Written Examination and the Doctoral Oral Examination specified by the Graduate School into a single Preliminary Oral Examination (or “Prelim”, for short). The Preliminary Oral examination paper will consist of two parts:

1. The first part is the student’s review of the literature for the proposed dissertation topic, on which the student will be questioned by the Committee. This portion of the oral examination paper must be at least 12 pages in length, excluding the bibliography section.
(2) The second part is concerned with the research already obtained, and the feasibility of the proposed dissertation. This portion of the oral examination paper must be at least 20 pages in length, excluding the bibliography section. An appropriate maximum length for the literature review and proposal is about 40 pages.

As stated in the Graduate School Handbook, students should have fulfilled, or will have fulfilled by the end of the semester in which the preliminary oral examination is to be taken, all required course work and the minimum residence requirements for the doctorate.

NO DOCTORAL STUDENT IS ALLOWED TO TAKE THE DOCTORAL PRELIMINARY ORAL EXAMINATION UNTIL THEY HAVE PASSED ALL OF THE DOCTORAL BASIC WRITTEN EXAMINATIONS.

NO DOCTORAL STUDENT IS ALLOWED TO TAKE THE DOCTORAL WRITTEN EXAM WITHOUT HAVING COMPLETED ALL NECESSARY COURSEWORK COVERED ON THE EXAM.

A STUDENT MUST BE REGISTERED FOR AT LEAST THREE (3) CREDIT HOURS OF BIOS 994 IN ORDER TO TAKE THE PRELIMINARY ORAL EXAMINATION.

THE PRELIMINARY ORAL EXAMINATION MUST PRECEDE THE FINAL THESIS DEFENSE BY AT LEAST 4 MONTHS.

In addition, no preliminary doctoral examination can be scheduled until the student has obtained some tangible research results as judged by the dissertation advisor.

The literature review and proposal to be considered at the preliminary oral examination must be submitted to the Doctoral Committee at least three weeks before the oral is scheduled. An appropriate maximum length for the literature review and proposal is about 40 pages.

PRELIMINARY ORAL EXAM INSTRUCTIONS

* It is important that the student follow the listed **TIMELINE** below. This section will be very helpful in planning their preliminary oral exam (prelim) presentation.

THE STUDENT SHOULD START THIS PROCESS AS SOON AS THE STUDENT HAS CONFIRMED THEIR COMMITTEE WITH THEIR ADVISOR.

At the beginning of the online prelim process the system will have a checklist of things the student should complete or are in the process of completing **BEFORE** they can do their preliminary oral exam. Please pay close attention to the timeline provided.

1. The student must have completed and pass the comprehensive exam before they can do their prelim
2. The student must have an abstract
3. The student’s full proposal – this can be added later **BUT** no less than (3) weeks before the prelim date
4. The student should have completed both the Report of Doctoral Committee Composition and Doctoral Exam Report forms. Once completed, save and upload these forms into a folder they have created that contain all of your dissertation materials.

The online prelim process can be found at internal.bios.unc.edu. Enter your ONYEN and PASSWORD, click OK. Proceed by clicking on ORAL EXAM REQUEST.

5. **Complete section one.** Bypass room information; your Student Services Manager will reserve and enter the room information.

6. **Complete section two.** The drop down box will have names of all BIOS faculty. If your committee member is not in the list you will need to enter their name.
 a. If the committee member is not listed on Graduate School Designation, the student must upload a copy of his/her CV. In general tenure track/tenured professors are on the list and research or clinical track may or may not be on the list. Please click on Graduate School Designation to see if the committee member is listed. Once again, if the committee member is not listed, a CV will be required.

7. At (5) weeks out, the student will need to have their abstract uploaded, the Report of Doctoral Committee Composition and Doctoral Exam Report forms uploaded.

8. At (3) weeks out, the student will need to have their proposal upload in the online system. Anything less than 3 weeks, the system WILL NOT allow the student to upload and they will be required to reschedule.

9. At (2) weeks out, the system will send out the prelim announcement, the doctoral committee composition and doctoral exam report forms, the proposal and abstract to the committee and to the student.

IMPORTANT: SAVE REQUEST only if the student are not ready to upload your abstract and proposal.

After the examination, the completed reporting forms should be returned to the Registrar. For any part of the preliminary oral examination, the student's Committee may award a PASS or FAIL, or a PASS subject to specified conditions (such as additional course work, or the passing of a special examination covering a specific topic). A student who fails a part of the preliminary oral examination is entitled to one re-examination, but not until at least 3 months have elapsed. Re-examination of the first part may be in writing, by request of the student. Appeals of Committee decisions may be made to the faculty of the Department through the Department Chair.

Doctoral Research

The research for the DrPH dissertation is a scientific and original project conducted by the student under supervision of the dissertation advisor or co-advisors. This research is expected to be of such scope, independence, and skillful presentation as to indicate that the candidate has acquired a mastery of the research methodology and its application, and has contributed new knowledge to this subject. The doctoral dissertation is expected to focus on applications of statistical methods for important issues in public health. The type of research expected is exemplified by that published in the *American Journal of Public Health, Journal of Clinical Epidemiology, American Journal of Epidemiology, and Statistics in Medicine.*
Advising Guidelines for Students and Faculty

Faculty with a primary appointment in the Department of Biostatistics or joint faculty with at least a 33% funding commitment from the Department of Biostatistics can serve as the dissertation advisor or co-advisor of at most 8 students at any given time. Taking on more students will require the authorization of the Department Chair in consultation with the Director of Graduate Studies.

All faculty with joint appointments with less than 33% funding commitment from the Biostatistics Department can be the doctoral dissertation advisor or co-advisor of at most four doctoral students at any given time, provided that the joint faculty member fully funds at least all but one of the students. For example, if they advise or co-advice three doctoral students, they must fully fund at least two of the students. If they advise or co-advice only one doctoral student, they are not required to fund that student.

All Adjunct Faculty members can be the doctoral dissertation advisor or co-advisor of at most three doctoral students at any given time, provided that the adjunct faculty member fully funds at least all but one of the students.

The doctoral thesis advisor and co-advisor(s) must be fully engaged in the student's doctoral dissertation and are expected to make substantial contributions on all papers submitted from the student's doctoral dissertation, regardless of their level of appointment.

A student can schedule a doctoral thesis defense only when at least one first authored paper (i.e., with the student as first author) has been submitted from their doctoral dissertation.

No student is allowed to start doctoral dissertation work and have formal doctoral thesis advising until they have passed the written doctoral examinations (both the Theory and Applications Exams for PhD students and the Applications Exam for DrPH students).

Any student who works as a GRA or is funded by a faculty member through a training grant or R01 is not obligated to work with that faculty member on their doctoral dissertation. The student is free to choose to work with any faculty member on their doctoral dissertation at any time.

A student must be notified at least 3 months in advance, except in extenuating circumstances, by their supervising faculty member if their funding will be discontinued for any reason.

Application for Graduation

Students must notify the Graduate School of their plan to graduate by applying to graduate through your ConnectCarolina portal and eGraduation Central no later than the deadline shown in the University Registrar’s Calendar for the semester in which they expect to graduate. Applications should only be submitted when the student realistically intends to graduate that semester and are valid for one semester only. If a student does not graduate in the semester expected, s/he must submit another application for graduation in a future semester. The department registrar will also notify students via email of deadlines. See List of Web Sites Page at the end for links.

Final Oral Examination

When a date for the final oral examination is chosen, the candidate should notify the Registrar, who will reserve a room and prepare a notice which is sent to the Biostatistics faculty, to members of the Doctoral Committee, and to members of the statistical profession in the Triangle area. The candidate should provide the following:
1. date of the examination;
2. names of the committee members of the Doctoral Committee, with addresses for any committee members who are not on the Biostatistics faculty;
3. title of the dissertation;
4. one copy of the abstract;
5. any biographical data which the candidate wishes to have included in the notice.

At least three weeks after distributing copies of the final draft of the dissertation to members of the Committee, the candidate takes the final oral examination. This includes a public exposition and defense of the dissertation, presented as a seminar or colloquium, at which time the candidate answers questions regarding the dissertation that are raised by the Committee and others present. Immediately after the public meeting, the Committee members meet to conclude the examination, at which time they may also ask questions about other areas.

The Graduate School form for reporting the results of this examination is sent by the Registrar to the Doctoral Committee Chair prior to the examination; this form, after completion, is returned to the Registrar after the examination.

A STUDENT MUST BE REGISTERED FOR BIOS 994 FOR THREE (3) CREDIT HOURS IN ORDER TO TAKE THE FINAL ORAL EXAMINATION

POLICY ON ENROLLMENT

The policy on enrollment for Master's Paper/thesis/dissertation only is stated below.

“Students who have completed all course work and residency requirements for their graduate degree program and who are using University resources (including faculty time) to conduct their Master’s paper/thesis/dissertation research will be required to register and pay tuition for at least 3 hours of Master’s paper/thesis/dissertation credit (992/993/994). As in the past, students must be registered in Master’s paper/thesis/dissertation (992/993/994) for 3 hours during the semester in which they complete their graduate work or are scheduled to receive their degree.”

“Students who are not using university resources may apply for a leave of absence. It should be emphasized, however, that students must be registered for at least 3 hours in order to receive a stipend, qualify for University Graduate Student Health Insurance, or maintain full-time student status for loan deferment or student visa status.

Please refer to the Graduate School Handbook link located in the appendix for additional information.

Electronic Theses and Dissertations Submission

Electronic Theses and Dissertations (ETDs) are a new initiative at UNC. ETDs provide students with digital publishing experience and an easier method for submission, plus the documents are much easier to search, retrieve and store than their paper versions. For more information on the benefits of ETDs, the process for changing to ETDs at UNC, how it affects you, to submit ETDs or search ETDs links, visit http://gradschool.unc.edu/etdguide/submission.html

Only the final document should be submitted after all relevant authorizations and department approvals are received. Once submitted, please patiently allow sufficient time for Graduate School staff to review the document for necessary format revisions. You will be notified if revisions are needed and/or if your document has been approved.

To submit click on Submit Electronic Thesis and Dissertations
One copy suitable for binding is presented to the Department of Biostatistics; this copy will be bound and placed in the Kuebler Library. Students are required to provide a PDF file of their dissertation. The student is responsible for ensuring that the electronic version can be converted correctly (i.e., for making sure that graphs, tables and equations are in the appropriate place and in the correct layout design).
DOCTOR OF PHILOSOPHY (PHD)

OBJECTIVES OF THE PROGRAM

The Doctor of Philosophy (PhD) program is designed to provide advanced, research-oriented training in theory and methodology to prepare individuals for academic careers or for research positions anywhere.

Upon satisfactory completion of this program the student will have:

1. demonstrated mastery of: (a) the theory of probability and statistical inference, by successfully passing the PhD Basic Written Examination in Biostatistics (Theory Exam), and (b) the application of said theory to solve a variety of applied statistical problems in the health sciences, by successfully passing the PhD Basic Written Examination in Biostatistics (Applications Exam) [https://www.bios.unc.edu/distrib/exam/];

2. learned advanced biostatistical techniques, including the ability to
 - design cost-effective surveys and experiments (including clinical trials) for collecting data on topics relevant to health, taking account of sampling error, measurement error, nonresponse, and other sources of bias and variability;
 - use advanced parametric and semiparametric models for the analysis of public health data, including linear regression, mixed models, methods for categorical data, generalized linear (mixed) models, generalized estimating equations, survival analysis, and Bayesian methods;
 - discern when standard methods are not appropriate, when nonparametric methods based on randomization and ranks may be substituted, or when new methods must be developed; and
 - estimate survival curves from time-to-event data which may involve censoring and time-dependent covariates, and test for differences among treatments and for the effects of covariates;

3. used computers for research data management (applying a defensible standard of documentation, archiving, protection of confidentiality, and audit trail) and for the analysis of data with standard statistical program packages;

4. carried out independent methodological research, including the writing of a scholarly dissertation and publishing papers based on the dissertation in respected statistical journals;

5. gained successful practical experience in statistical consulting, including interaction with research workers in the health sciences, abstracting statistical aspects of substantive problems, and communicating the results to persons without specialized biostatistical training; if not outside academia, then this consulting experience can be obtained by serving in the Biometric Consulting Laboratory (BCL) or as a member of a university research project team;

6. taught basic statistical theory and applications effectively, not only to biostatistics majors, but also to other health science practitioners.

ADMISSIONS REQUIREMENTS
1. An appropriate prior Bachelor’s or Master’s degree in Statistics, Biostatistics, or in a closely related field.

2. Strong mathematical training including linear algebra. Advanced calculus/elementary analysis are strongly encouraged but on occasion exceptional students are admitted without it. In such cases, the student will take MATH 521 during the first year of study.

TIME/RESIDENCE REQUIREMENTS

Doctoral students are required to complete a minimum residence credit of four full semesters, at least two of the required four semesters of residence must be earned in contiguous (i.e., fall to spring or spring to fall) registration on this campus. All requirements for the degree must be completed within eight years of the time the student matriculated in the program. Please refer to the Graduate School Handbook located in the appendix for additional information.

COURSE REQUIREMENTS

The Gillings School of Global Public Health requires a minimum of 18 semester hours of course work beyond the Master's degree for admission to candidacy and to dissertation and research courses. The Department of Biostatistics requirements are as indicated below. Requirements (A), (B), and (C) may be waived for students who have had previous training or experience deemed equivalent by the Director of Graduate Studies (DGS). Courses counted toward the School of Public Health requirements, or taken at UNC prior to entry into the program, may be included in (D) and (E).

A. Mathematics

- Advanced Calculus and/or Real Analysis
 The student is required to take BIOS 760 and BIOS 761. This requires working knowledge of advanced calculus equivalent to at least the level of MATH 521 at UNC-CH.

- Linear Algebra
 The student is required to take BIOS 762. This requires working knowledge of the material in MATH 422, 577, and 547 at UNC-CH.

Students who have not taken advanced calculus and/or real analysis are required to take an equivalent course at UNC such as MATH 521.

B. Statistical Computing and Data Management

- BIOS 511 or BIOS 669 are appropriate. This is self-enforcing, however, since the PhD Basic Written Examination (Applications Exam), and all non-service courses in BIOS, assume that students have mastered the topics covered therein.

C. Basic Statistics

- The elements of probability, statistical inference, statistical methods, and linear regression. Required courses are: BIOS 662, BIOS 663, BIOS 672 and BIOS 673. Most of these courses are included in a typical MS program.

D. Advanced Statistics

- Required Courses BIOS 760, BIOS 761 BIOS 762, BIOS 767, BIOS 780 and BIOS 850
- Electives
 At least 12 semester hours. Acceptable courses include all those numbered at the 700-level in Biostatistics or in (Mathematical) Statistics at UNC-CH, and equivalent courses in...
Statistics at other institutions as approved by the Director of Graduate Studies (DGS). Requests to count 700-level courses in (Mathematical) Statistics toward this requirement are considered individually.

For the electives, students have the option of i) 12 credits of BIOS 700-level or ii) taking 9 credits of BIOS 700-level courses and 3 credits of supporting program courses.

NOTE: BIOS 760, 761, 762, 767 are typically taken during the second year of study and 780 is typically taken during the third year, following completion of BIOS 662, 663, 672 and 673 during the first year of study.

E. Supporting Program
 • A supporting program of at least 6 semester hours, including EPID 600 or 710 and SPHG 600 (or equivalent), is required.

F. Practicum
 • BIOS 841, BIOS 843 (4 semesters (credits) are required). BIOS 843 can be taken only if you have taken theory and applications written qualifying exams.
 • In addition, each PhD student may be required to grade up to 3 courses (up to 4 for a combined masters/phd program).

Bios 843: Students in all graduate degree programs (MPH, MS, DrPH and PhD) are not allowed to miss more than two seminars in the semester for which they are registered for BIOS 843. If the student should miss more than two seminars, they will receive an automatic incomplete for the semester for which they are registered. To remove the incomplete, the student must makeup all missed seminars in the subsequent semester for which they are NOT registered for BIOS 843. The student must also write a one paragraph summary about each seminar and submit these summaries to the Director of Graduate Studies.

Electronic devices WILL NOT be allowed during seminar presentations.

G. Dissertation Registration
 • All doctoral students must register for a minimum of 3 credit hours of dissertation work (BIOS 994).

H. Transfer of Credits
 • A doctoral student may request transfer up to 6 credit hours from another institution. Courses transferred are subject to examination at the time of the Doctoral Oral Examination. The Committee may recommend the transfer of both course and residence credit in its report to the Graduate School, which has the final responsibility for approving the transfer. Transferred credit does not relieve the student of the residence requirement of at least one academic year of continuous full-time study, or the equivalent, at UNC-CH. See the List of Web Sites for link to Graduate School forms.

NOTE: This Department requires no “Research Skill” or “Language” as defined by the Graduate School. It may be beneficial to a student's program to take more computing or a foreign language (e.g., French may be desirable for a demography student). These individual arrangements are left to the students and their advisors.

See Doctor of Philosophy Checklist
To enhance your UNC experience, the department offers numerous ways for students to finance their education, get involved in volunteer service activities and participate in various student organizations.

DEGREE EXAMINATIONS AND DISSERTATION

Basic Written Examination

Each PhD student is required to pass the PhD Basic Written Examination (Theory Exam and Applications Exam). The PhD Basic Written Examination is usually taken at the end of the first or second year in the program depending on the student’s prior obtained degree before entering the program. See page 42 for details.

Doctoral Committee

In the Department of Biostatistics, the Doctoral Committee combines the functions of two committees as specified by the Graduate School: (1) the Doctoral Oral Examination Committee, and (2) the Dissertation Committee.

After the candidate has entered the final stage of planned course work, has chosen a topic for PhD dissertation research, and has been declared ready by the dissertation advisor, the student and advisor recommend the composition of the Doctoral Committee to the DGS for approval. The composition of each Doctoral Committee is to be approved in writing by both the chairperson of the Department and the DGS. An appropriate form to accommodate this approval process is available from the Departmental Registrar. This form will solicit information regarding the proposed dissertation topic. The student should first consult with the Registrar concerning completion of forms and acceptability of committee appointments.

No fewer than five persons shall constitute the Doctoral Committee. A majority of the members must be full members of the Graduate Faculty. Other members may be limited members of the Graduate Faculty or special appointees. The Committee must also include a representative of the supporting program.

Preliminary Doctoral Examinations

In the Department of Biostatistics, it is customary to combine the Doctoral Written Examination and the Doctoral Oral Examination specified by the Graduate School into a single Preliminary Oral Examination (or “Prelim”, for short). The Preliminary Oral examination paper will consist of two parts:

(1) The first part is the student’s review of the literature for the proposed dissertation topic, on which the student will be questioned by the Committee. This portion of the oral examination paper must be at least 12 pages in length, excluding the bibliography section.

(2) The second part is concerned with the research already obtained, and the feasibility of the proposed dissertation. This portion of the oral examination paper must be at least 20 pages in length, excluding the bibliography section. An appropriate maximum length for the literature review and proposal is about 40 pages.

As stated in the Graduate School Handbook, students should have fulfilled, or will have fulfilled by the end of the semester in which the preliminary oral examination is to be taken, all required course work and the minimum residence requirements for the doctorate.
NO DOCTORAL STUDENT IS ALLOWED TO TAKE THE DOCTORAL PRELIMINARY ORAL EXAMINATION UNTIL THEY HAVE PASSED ALL OF THE DOCTORAL BASIC WRITTEN EXAMINATIONS.

NO DOCTORAL STUDENT IS ALLOWED TO TAKE THE DOCTORAL WRITTEN EXAM WITHOUT HAVING COMPLETED ALL NECESSARY COURSEWORK COVERED ON THE EXAM.

A STUDENT MUST BE REGISTERED FOR AT LEAST THREE (3) CREDIT HOURS OF BIOS 994 IN ORDER TO TAKE THE PRELIMINARY ORAL EXAMINATION.

THE PRELIMINARY ORAL EXAMINATION MUST PRECEDE THE FINAL THESIS DEFENSE BY AT LEAST 4 MONTHS.

In addition, no preliminary doctoral examination can be scheduled until the student has obtained some tangible research results as judged by the dissertation advisor.

The literature review and proposal to be considered at the preliminary oral examination must be submitted to the Doctoral Committee at least three weeks before the oral is scheduled. An appropriate maximum length for the literature review and proposal is about 40 pages

PRELIMINARY ORAL EXAM INSTRUCTIONS

* It is important that you follow the listed TIMELINE below. This section will be very helpful in planning your preliminary oral exam (prelim) presentation.

PLEASE START THIS PROCESS AS SOON AS YOU CONFIRM YOUR COMMITTEE WITH YOUR ADVISOR.

At the beginning of the online prelim process the system will have a checklist of things you should complete or are in the process of completing BEFORE you can do your preliminary oral exam. Please pay close attention to the timeline provided.

1. You must have completed and passed the comprehensive exam before you can do your prelim
2. You must have an abstract
3. Your full proposal – this can be added later BUT no less than (3) weeks before the prelim date
4. You should have completed both the Report of Doctoral Committee Composition and Doctoral Exam Report forms. Once completed, save and upload these forms into a folder you have created that contain all of your dissertation materials.

The online prelim process can be found at internal.bios.unc.edu. Enter your ONYEN and PASSWORD, click OK. Proceed by clicking on ORAL EXAM REQUEST.

5. Complete section one. You can bypass room information; your Student Services Manager will reserve and enter your room information.
6. Complete section two. The drop down box will have names of all BIOS faculty. If your committee member is not in the list you will need to enter their name.
a. If your committee member is not listed on Graduate School Designation, you must upload a copy of his/her CV. In general tenure track/tenured professors are on the list and research or clinical track may or may not be on the list. Please click on Graduate School Designation to see if your committee member is listed. Once again, if your committee member is not listed, a CV will be required.

7. At (5) weeks out, you will need to have your abstract uploaded, the Report of Doctoral Committee Composition and Doctoral Exam Report forms uploaded.

8. At (3) weeks out, you will need to have your proposal upload in the online system. Anything less than 3 weeks, the system WILL NOT allow you to upload and you will be required to reschedule.

9. At (2) weeks out, the system will send out your prelim announcement, your doctoral committee composition and doctoral exam report forms, the proposal and abstract to the committee and to you.

IMPORTANT: SAVE REQUEST only if you are not ready to upload your abstract and proposal.

After the examination, the completed reporting forms should be returned to the Registrar. For any part of the preliminary oral examination the student's Committee may award a PASS or FAIL, or a PASS subject to specified conditions (such as additional course work, or the passing of a special examination covering a specific topic). A student who fails a part of the preliminary oral examination is entitled to one re-examination, but not until at least 3 months have elapsed. Re-examination of the first part may be in writing, by request of the student. Appeals of Committee decisions may be made to the faculty of the Department through the Department Chair.

Doctoral Research

The research for the PhD dissertation is a scientific and original project conducted by the student under supervision of the dissertation advisor or co-advisors. This research is expected to be of such scope, independence, and skillful presentation as to indicate that the candidate has acquired a mastery of the research methodology and its application, and has contributed new knowledge to this subject. Research for the PhD dissertation is expected to be of the type leading to articles in *Biometrics, Annals of Applied Statistics, Biometrika, Demography, the Journal of the American Statistical Association, the Annals of Statistics, American Journal of Human Genetics, Neuroimage, and Genetic Epidemiology.*

Advising Guidelines for Students and Faculty

Effective immediately, faculty with a primary appointment in the Department of Biostatistics or joint faculty with at least a 33% funding commitment from the Department of Biostatistics can serve as the dissertation advisor or co-advisor of at most 8 students at any given time. Taking on more students will require the authorization of the Department Chair in consultation with the Director of Graduate Studies.

All faculty with joint appointments with less than 33% funding commitment from the Biostatistics Department can be the doctoral dissertation advisor or co-advisor of at most four doctoral students at any given time, provided that the joint faculty member fully funds at least all but one of the students. For example, if they advise or co-advice three doctoral students, they must fully fund at least two of the students. If they advise or co-advice only one doctoral student, they are not required to fund that student.

All Adjunct Faculty members can be the doctoral dissertation advisor or co-advisor of at most three doctoral students at any given time, provided that the adjunct faculty member fully funds at least all but one of the students.
The doctoral thesis advisor and co-advisor(s) must be fully engaged in the student's doctoral dissertation and are expected to make substantial contributions on all papers submitted from the student's doctoral dissertation, regardless of their level of appointment.

A student can schedule a doctoral thesis defense only when at least one first authored paper (i.e., with the student as first author) has been submitted from their doctoral dissertation.

No student is allowed to start doctoral dissertation work and have formal doctoral thesis advising until they have passed the written doctoral examinations (both the Theory and Applications Exams for PhD students and the Applications Exam for DrPH students).

Any student who works as a GRA or is funded by a faculty member through a training grant or R01 is not obligated to work with that faculty member on their doctoral dissertation. The student is free to choose to work with any faculty member on their doctoral dissertation at any time.

A student must be notified at least 3 months in advance, except in extenuating circumstances, by their supervising faculty member if their funding will be discontinued for any reason.
Application for Graduation

Students must notify the Graduate School of their plan to graduate by applying to graduate through your ConnectCarolina portal and eGraduation Central® no later than the deadline shown in the University Registrar’s Calendar® for the semester in which they expect to graduate. Applications should only be submitted when the student realistically intends to graduate that semester and are valid for one semester only. If a student does not graduate in the semester expected, s/he must submit another application for graduation in a future semester. The department registrar will also notify students via email of deadlines. See List of Web Sites at the end of for links.

Final Oral Examination

When a date for the Final Oral Examination is chosen, the candidate should notify the Registrar, who will reserve a room and prepare a notice which is sent to the Biostatistics faculty, members of the Doctoral Committee, and to members of the statistical profession in the Triangle area. The candidate should provide the following:

1. date of the examination;
2. names of the members of the Doctoral Committee, with addresses for any committee members who are not on the Biostatistics faculty;
3. title of the dissertation;
4. one copy of the abstract;
5. any biographical data which the candidate wishes to have included in the notice.

At least three weeks after distributing copies of the final draft of the dissertation to members of the Committee, the candidate takes the Final Oral Examination. This includes a public exposition and defense of the dissertation, presented as a seminar or colloquium, at which time the candidate answers questions regarding the dissertation that are raised by the Committee and others present. Immediately after the public meeting, the Committee members meet to conclude the examination, at which time they may also ask questions about other areas. The Graduate School form for reporting the results of this examination is sent by the Registrar to the Doctoral Committee Chair prior to the examination; this form, after completion, is returned to the Registrar after the examination.

A STUDENT MUST BE REGISTERED FOR BIOS 994 FOR THREE (3) CREDIT HOURS IN ORDER TO TAKE THE FINAL ORAL EXAMINATION

POLICY ON ENROLLMENT

The policy on enrollment for Master's Paper/thesis/doctoral dissertation only is stated below.

“Students who have completed all course work and residency requirements for their graduate degree program and who are using University resources (including faculty time) to conduct their Master’s paper/thesis/doctoral dissertation research will be required to register and pay tuition for at least 3 hours of Master’s paper/thesis/doctoral dissertation credit (992/993/994). As in the past, students must be registered in Master’s paper/thesis/doctoral dissertation (992/993/994) for 3 hours during the semester in which they complete their graduate work or are scheduled to receive their degree.”

“Students who are not using university resources may apply for a leave of absence. It should be emphasized, however, that students must be registered for at least 3 hours in order to receive a stipend, qualify for University Graduate Student Health Insurance, or maintain full-time student status for loan deferment or student visa status.”
Electronic Theses and Dissertations Submission

Electronic Theses and Dissertations (ETDs) are a new initiative at UNC. ETDs provide students with digital publishing experience and an easier method for submission, plus the documents are much easier to search, retrieve and store than their paper versions. For more information on the benefits of ETDs, the process for changing to ETDs at UNC, how it affects you, to submit ETDs or search ETDs links, visit http://gradschool.unc.edu/etdguide/submission.html

Only the final document should be submitted after all relevant authorizations and department approvals are received. Once submitted, please patiently allow sufficient time for Graduate School staff to review the document for necessary format revisions. You will be notified if revisions are needed and/or if your document has been approved.

To submit click on Submit Electronic Thesis and Dissertations

One copy suitable for binding is presented to the Department of Biostatistics; this copy will be bound and placed in the Kuebler Library. Students are required to provide a PDF file of their dissertation. The student is responsible for ensuring that the electronic version can be converted correctly (i.e., for making sure that graphs, tables and equations are in the appropriate place and in the correct layout design.
SUPPORTING PROGRAMS

The Department of Biostatistics requires a “supporting program” of at least 6 semester hours for the MS, 6 semester hours for the PhD, and 18 semester hours for the DrPH, in a field or fields of application. This supporting program typically includes EPID 600 or 710 (or equivalent) and SPHG 600. A “field of application” is loosely defined as a discipline whose members might reasonably be expected to seek statistical consultation on occasion. (For the DrPH, the field of application must be relevant to Public Health.) Statistics, Mathematics, and Computer Science are excluded. A proposal involving a course in Operations Research is judged on its individual merits.

A supporting program is intended to be more flexible than a minor as defined by the Graduate School Handbook. For example,

1. The supporting program of students specializing in Demography may include demography-related BIOS courses (e.g. BIOS 670, 771, 777). These cannot then be counted toward BIOS elective requirements. For further details, consult the Director of Population Studies.

2. When a supporting program is split into more than one field of application, it needs not have the exact hours in each field as specified by the Graduate School for a minor. However, the requirements of the Graduate School on splitting minors should serve as a strong guideline.

All supporting programs must be approved by the Director of Graduate Studies in consultation with the appropriate faculty in the field(s) of the supporting program.

Alternative to Supporting Program.

A student may elect to do a formal minor instead of a supporting program. Students choosing to do so should consult the current Graduate School catalogue for requirements.

Representation of Supporting Program (or minor) on Doctoral Committee.

The Doctoral Committee must include at least one member from the area of the supporting program or minor.
DEPARTMENT-WIDE WRITTEN EXAMINATIONS

INTRODUCTORY STATEMENT

The MPH and MS Written Examinations satisfy the Graduate School's requirement that every Master's candidate must pass a comprehensive examination covering all course work done for the degree. All Master's candidates are required to pass these examinations by the deadline established by the Graduate School for the commencement at which they expect to receive the degree.

The Doctoral Basic Written Examinations serve as intra-departmental qualifying examinations for students in the PhD and DrPH programs. PhD students are required to take both a Theory Exam and an Applications Exam. DrPH students are required to take an Applications Exam. These intra-departmental written qualifying examinations are different from the Doctoral Written Examination required by the Graduate School.

The Master’s examination is usually offered in July or August. The Doctoral Basic Written Examinations (PhD and DrPH) are usually offered in July or August. The exact dates of the examinations are set by the faculty, upon the recommendation of the Examinations Committee, after consultation with student representatives. See departmental exam web site for exam dates.

The culminating experiences provide students an opportunity to synthesize, integrate and apply knowledge and skills learned in coursework and other learning experiences and require students to demonstrate attainment of program competencies.

Rules on the maximum number of years to pass the Basic Written Examinations

1. Doctoral students
 a. Eligibility
 i. Doctoral Applications Exam The student must (1) be admitted to the DrPH or PhD program prior to taking the exam (either officially by the university, or a formal conditional admissions offer from the Admissions Committee), (2) be formally registered for the Fall semester of the exam year, and (3) have completed BIOS 762 and BIOS 767.

 ii. Doctoral Theory Exam The student must (1) be admitted to the PhD program prior to taking the exam (either officially by the university, or a formal conditional admissions offer from the Admissions Committee), (2) be formally registered for the Fall semester of the exam year, and (3) have completed BIOS 760, 761, 762, and 767.

 b. Timing of exams
 i. Doctoral students admitted directly to doctoral programs Doctoral students are expected to take the Basic Written Examination right after they finish the required core courses, which is typically after their 1st or 2nd year in the program. In all cases, they are required to have taken all required PhD or DrPH Basic Written Examinations by the end of the 3rd year after they started in the doctoral program. In addition, they must pass all
required PhD or DrPH Basic Written Examinations by the end of the 4th year.

ii. **Doctoral students proceeding from the Master’s programs**
Doctoral students who proceed from the Masters programs are expected to take the Basic Written Examinations at the end of the 1st year started as a doctoral student, and they are required to have taken all required PhD or DrPH Basic Written Examinations by the end of the 2nd year after they started in the doctoral program. They are required to pass all PhD or DrPH Basic Written Examinations by the end of the 3rd year in the doctoral program.

c. **Priority funding based on exam status**

i. Any doctoral student must pass the Basic Written Examinations by the end of the 3rd year in order to receive priority for funding. No student should receive more than four years of funding without passing all Basic Written Examinations for his or her program.

d. **Special considerations**

i. Part time students are allowed to have an extra year for these deadlines if requested.

ii. Medical leave of absence or other approved leave of absence will stop the clock for these deadlines/guidelines.

iii. For students who entered the program Fall 2007, their clock starts in Fall 2007.

2. **Master’s students**

a. **Eligibility**

i. **MPH Exam** The student must (1) be admitted to the MPH program prior to taking the exam (either officially by the university, or a formal conditional admissions offer from the Admissions Committee), (2) be formally registered for the fall semester of the exam year, and (3) have completed (or be currently taking or formally exempted from) BIOS 511, 545, 550, 662, and 664 (BIOS 660 and 661 can be substituted for BIOS 550).

ii. **MS Exam Part I** The student must (1) be admitted to the MS program prior to taking the exam (either officially by the university, or a formal conditional admissions offer from the Admissions Committee), (2) be formally registered for the Fall semester of the exam year, and (3) have completed (or be formally exempted from) BIOS 660 and 661.

iii. **MS Exam Part II** The student must (1) be admitted to the MS program prior to taking the exam (either officially by the university, or a formal conditional admissions offer from the Admissions Committee), (2) be formally registered for the Fall
semester of the exam year, and (3) have completed (or be formally exempted from) BIOS 511, 662 and 663.

b. **Timing of exams**

i. Master’s students are expected to take the Master’s Written Examinations right after they finish the required core courses, which is typically after their first year in the program. They are required to have taken the Master’s Written Examinations by the end of the 2nd year after starting in the Master’s program. They are also required to pass the Masters Written Examination by the end of the 3rd year/beginning of the 4th year in the program.

c. **Special considerations**

i. Part time students are allowed to have an extra year for these deadlines if requested.

ii. Medical leave of absence or other approved leave of absence will stop the clock for these deadlines/guidelines.

FORMAT AND SCHEDULING

MS and PhD examinations are composed of two parts: Theory and Applications. The exam formats are as follows:

<table>
<thead>
<tr>
<th>Theory Exam</th>
<th>Applications Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td></td>
</tr>
<tr>
<td>3 Questions</td>
<td>3 Questions</td>
</tr>
<tr>
<td>(6 hours, in-class, closed book)*</td>
<td>(6 hours, in-class, open book)**</td>
</tr>
<tr>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>2 Questions, Day 1 (4 hours)</td>
<td>4 Questions</td>
</tr>
<tr>
<td>2 Questions, Day 2 (4 hours)</td>
<td>(5 days, take-home, open-book)***</td>
</tr>
<tr>
<td>(in-class, closed book)</td>
<td></td>
</tr>
<tr>
<td>MPH</td>
<td></td>
</tr>
<tr>
<td>(not applicable)</td>
<td>3 Questions</td>
</tr>
<tr>
<td>(6 hours, in-class, open book)</td>
<td>(6 hours, in-class, open book)**</td>
</tr>
<tr>
<td>DrPH</td>
<td></td>
</tr>
<tr>
<td>(not applicable)</td>
<td>4 Questions</td>
</tr>
<tr>
<td>(5 days, take-home, open-book)***</td>
<td></td>
</tr>
</tbody>
</table>

*For the MS Theory exam, numerical and mathematical distribution tables, will be provided. Students can bring one 8”*11” sheet of paper ("study guide") with hand-written notes in blue ink on only one side. These specifications of the study guide will be strictly enforced. Study guides not satisfying these specifications will not be allowed in the exam room. Calculators will be provided - students are not allowed to use their own calculators. Other electronic devices (e.g., laptops, tablets, phones) are not allowed.

**Students may only bring four text and reference books to the MS Applications exam, and five such books to the MPH Exam. A printed set of class notes or set of slides counts as one book. In the MS Applications exam and the MPH Exam, electronic copies, such as PDF files of instructor-supplied class notes from the UNC BIOS classes covered in the respective exams are allowed, and they do not count toward the totals given above. All files should be brought on a USB drive (online storage
such as DropBox and Google Drive is not allowed). Electronic copies of class textbooks are also allowed. Internet access is allowed only for online SAS documentation at sas.com (not any other website), R help files and dictionary websites (including Google Translate). No other electronic media are permitted. Some specific examples: Access to online calculators, explanations, comments, blogs and forums, examples, courses, videos, instructional material, and class notes is not allowed. Any exceptions must be with explicit approval from the chair of the Masters Exam Committee (for example, a student who had BIOS 663 waived and would like to use class notes in PDF format from a similar class taken at another university).

***An answer to a question must not exceed 8 typewritten (300 words per page with font no smaller than 12 pt) pages, including tables and figures.

NOTE: Students who plan to take any of the exams need to sign up with the Registrar by the date specified on the departmental exam website.

GRADING OF DEPARTMENT-WIDE WRITTEN EXAMINATIONS

The Examinations Committees prepare and conduct all department-wide written examinations, and handle arrangements for their grading.

Papers are coded so that the graders are unaware of the students' identities. Each student is given a grade of Pass or Fail. For MPH and MS exams, a Provisional Pass can be given.

A team of two graders is appointed for each question. Where possible, all graders are members of the Department of Biostatistics and of the Graduate Faculty.

The student’s answer to an individual question is marked independently by each of the two graders on a scale of 0 to 25. The mark awarded reflects the effective proportion of a question correctly answered. After grading, graders will resolve any major discrepancies in their respective marks.

On the basis of a student's total score on a paper, the BIOS faculty decide by vote whether the student has passed or failed.

Examination papers are not identified to author until after the verdicts of Pass and Fail (and Provisional Pass for MPH and MS exams) have been rendered.

The Chair of the Examinations Committee notifies all students by letter of the pass/fail/provisional pass decision and, if applicable, any special commendations. Advisors are free also to notify their advisees of the pass/fail results. No further information will be released to the students.

A student whose performance was not of the standard required may be re-examined at the next regularly scheduled examination, or at an earlier date set by the Examinations Committee. One re-examination is permitted automatically.

Rules for Master’s Re-Exams in Jan/Feb

The purpose for offering the MS re-exams in Jan/Feb of a particular year is to provide the students an opportunity to satisfy the MS degree requirements for subsequent May or August graduation during that year. Students who are eligible for taking the re-exams are those who are in a terminal MS degree program, will have finished all the course requirements and the MS paper for May or August graduation, but have failed exactly one part of the two-part Written Examination in the previous year.
To be eligible for taking the re-examination, students: (i) must have failed exactly one part of the MS Written Examination; (ii) must not be admitted to a doctoral program in Biostatistics; and (iii) must have completed at least 1 full year of residency in the BIOS graduate program.

Taking the re-examination is counted as 1 attempt to pass the MS Written Examination. Students who did not pass the MS Written Examination are not obligated to take the re-examination in Jan/Feb if they prefer to take the next regularly scheduled MS Written Examination.

The purpose for offering the MPH re-exams in Jan/Feb of a particular year is to provide the students an opportunity to satisfy the MPH degree requirements for subsequent May or August graduation during that year. Students who are eligible for taking the re-exams are those who have failed their first MPH examination. Taking the re-examination is counted as 1 attempt to pass the MPH Written Examination. Students who did not pass the MPH Written Examination are not obligated to take the re-examination in Jan/Feb if they prefer to take the next regularly scheduled MPH Written Examination.

A retake examination for the PhD Theory Exam will be given after final exams in December. This retake will count as a second attempt and only students who fail the PhD Theory Exam will be eligible to sit the exam in December. In order to retake the exam in December, students must register for 3 credits of 990 and retake either 760 or 762 or both, depending on their performance on day 1 and day 2 of the July/August exam. Specifically, if the passing line is set at X% for the Part 1 exam, then students, who score below X% on day 1 would retake 760 (under the 990 number), and students who score below X% on day 2 would retake 762. For the December retake only, a student only needs to retake the day or days upon which the July/August exam score was below X%. Students who do not pass the retake exam in December will need to petition for permission for a third attempt to take the exam again the following year. This retake is optional; students may elect to wait and take the entire PhD Theory exam again the following July/August.

AVAILABILITY OF OLD EXAMS

All recent and old examinations are available on the following web site: Please use Internet Explorer. https://www.bios.unc.edu/distrib/exam/.
TOPICS COVERED ON THE MPH AND MS WRITTEN EXAMINATIONS

The questions in each part of the written examination for the MS degree in Biostatistics may cover topics in the following courses:

- BIOS 511 Introduction to Statistical Computing and Data Management
- BIOS 660, 661 Probability and Statistical Inference
- BIOS 662 Intermediate Statistical Methods
- BIOS 663 Intermediate Linear Models

The questions in the MPH degree in Biostatistics may cover topics in the following courses:

- BIOS 511 Introduction to Statistical Computing and Data Management
- BIOS 545 Principles of Experimental Analysis
- BIOS 550 Basic Elements of Probability and Statistical Inference I (or BIOS 660 and 661)
- BIOS 662 Intermediate Statistical Methods
- BIOS 664 Sample Survey Methodology

TOPICS COVERED ON THE DOCTORAL BASIC WRITTEN EXAMINATIONS

The PhD Theory Exam covers theoretical aspects of statistics at the level and content of the following courses:

- BIOS 760, 761, 762, 767 and relevant prerequisites.

The Doctoral Applications Exam covers applied aspects of statistics at the level and content of the following courses:

- BIOS 762, 767 and relevant prerequisites.
HONOR CODE - WORKING INDEPENDENTLY

In the performance of laboratory and homework assignments, the student may use all available sources of information and assistance. These include directions and suggestions by the instructor and course assistants, and (IF PERMITTED) consultations with other students. However, the final assembly and writing up of the report on an assignment are to be completely in the individual student's words.

Completely individual work is expected on both in-class and take-home examinations, without discussion among students and others after the examination has been distributed.

In accordance with the University's Honor Code, the submission of any homework report or test paper by a student implies a pledge of originality of the authorship. It is the student's responsibility to seek clarification from the appropriate faculty member in case of any question as to whether particular behavior might be perceived as an Honor Code violation. Evidence of violations will be reported directly to the Honor Court (http://honor.unc.edu).

INSTRUCTORS MAY MODIFY THIS POLICY AND PLEDGE AS APPROPRIATE FOR THEIR COURSES BY WRITTEN NOTIFICATION TO THEIR STUDENTS.

Typical honor pledge:

“In recognition of and in the spirit of the honor code, I certify that I have neither given nor received aid on this examination.”
MASTER'S PAPERS

GENERAL

Each MPH or MS candidate is required to register for BIOS 992, and thereby earn at least three hours of credit for writing a Master's Paper, as a substitute for a Master's Thesis. A Master’s Paper need not follow the formatting guidelines of the Graduate School. (As an exception, an MS candidate may elect to write a Master's Thesis in accordance with the regulations of the Graduate School and should therefore register for BIOS 993. In this instance, please follow the graduate school guidelines for thesis and dissertations. See page 51.)

An MPH Paper should show some synthesis of knowledge, and advance or contribute to the field of Public Health. It must be approved by a Paper Advisor who is a member of the Biostatistics Graduate Faculty; or, if the Advisor is not such a member, then there must also be a Reader who is.

An MS Paper may describe in detail the analysis of data or it may consist of a theoretical exposition of a methodological topic in Biostatistics or Statistics. It must be approved by a Paper Advisor and a Reader, at least one of whom is a member of the Biostatistics Graduate faculty.

All candidates must make oral presentations of their Master's Papers, with the exception that those candidates who have permanently left the Triangle area may petition for exemption by letter to the Director of Graduate Studies. If the paper is not presented orally, then an extra Reader is required.

As required by the Department, the Paper must also be submitted in a suitable written format. The original (its title page signed by the Advisor, by any required Reader(s), and by the Director of Master's Paper Day if presented orally) goes to the Registrar for binding and placement in the Departmental Archives. Both the original copy (submitted on 100% rag bond paper) and an electronic copy (in PDF format) must be turned into the Registrar.

To indicate successful completion of the Master’s Paper Project, a “Substitute of Master’s Thesis” form is completed and submitted to the Graduate School when the Master’s Paper is received by the Registrar.

GUIDELINES FOR THE WRITTEN FORMAT

Margins: All copies must have uniform margins, as follows: the first page of the text and all first pages of chapters should have margins of two inches at the top, one and one-half inches at the left and one inch at the right and bottom. All other pages should have margins of one inch at the top, bottom, and right, and one and one-quarter inches at the left. The margins are checked carefully at the time the Paper is submitted and any pages not meeting these specifications will be rejected and must be retyped. Charts, graphs, tables, etc., must meet these margin specifications. This requirement may necessitate photographic reduction.

Spacing: Text must be double-spaced, except for quotations (including material of four lines or more, which should be single-spaced and should not be enclosed in quotation marks). Quotations of four or more lines should be indented four spaces on each line. Each paragraph throughout the text should be indented eight spaces.

Title Page: See the samples on the pages following these guidelines.

Table of Contents: When appropriate, a table of contents should be drawn up and should follow the title page. On it should be listed the chapter headings with large Roman numerals, the bibliography,
and the appendix, if any, with the page numbers at which these divisions begin. A foreword, introduction, or appropriate opening quotation is permissible.

First Page: The title of the Paper should be repeated in capitals, centered, and placed two inches below the top of the page. Three spaces below the title should appear the word “by”, and three spaces below this the author's full name in the same manner as the title page. The text, or the first subtitle, should begin five spaces below the author's name. Subtitles should be positioned consistently throughout the entire Paper.

Pagination: Small Roman numerals should be used to number the introductory pages, with the title page, which is the first of these, bearing no number. Arabic numerals should be used to number the pages of the text. The first page of the text should be left unnumbered. On all other pages, the page number should be placed in the upper right-hand corner on the margin line at the right. The top line of the text should begin three spaces below this.

Appendix: Supporting documents and elaborated material may be presented in appendices. The first appendix should be placed at the end of the text and should begin a new page. The word “APPENDIX” should be followed by the Roman numeral I, if there is to be more than one. The title explaining the appendix should be placed five spaces below this. Subsequent appendices should be started on new pages, using the same format and the appropriate numeral and descriptive title. Page numbers should be given in Arabic numerals and should continue the numbering of the text.

References: References should be in accordance with the style sheet of the American Statistical Association. Any recent issue of that journal, or the *Journal of the American Statistical Association*, will exemplify the style.

Condition of Copy: The Department requires each student to assume full responsibility for the correctness in content and form of all copies of the Paper. All copies must be clear and legible; all copies must be proofread. The student is responsible for having pages in proper order before submitting the Paper. BEFORE REPRODUCING the Paper, the student should give the manuscript to the Registrar to check for completeness, margins, spacing, uniformity of type, and other format requirements.

Methods of Reproduction: Papers may be reproduced by Xeroxing. All copies must be on 100% cotton content paper, 20 pound weight, 8 1/2” x 11” size, which is available at Student Stores and most copy centers. Pages that have been reproduced will be accepted only if they have clear dark print.

Refer to the Graduate School's “Guide to Thesis and Dissertations” for more detailed information.
GUIDELINES FOR THE ORAL PRESENTATION OF MASTER’S PAPERS

Oral presentations will ordinarily take place as part of the Faculty-Student Seminar Series, normally during the noon hour on Fridays. Students should contact the Seminar Committee Chair near the beginning of the semester in which they desire to present, in order to schedule their presentation and arrange the details. Presentations will be expected to take 15 to 20 minutes, with 5 to 10 minutes allowed for questions. The Master’s Paper does not need to be in final form at the time of the oral presentation. The general public is invited, and especially all Department faculty and students; the Advisor and Reader(s) are expected to attend if at all possible.

Here are some suggestions you may find useful:

- **Time:** Stick to the time allotted, i.e. 15-20 minutes total. Plan for 15-18 minutes, allowing the remainder for questions.
- **Size:** Ensure that your overheads can be read from the back of the room. Use a large font.
- **Length:** Use short phrases, not full sentences, on your slides.
- **Space:** Don't crowd your slides; leave plenty of space to make your text, tables and figures stand out.
- **Content:** Don't feel obligated to present every detail of the work you've done -- you can't do that anyhow in 15-20 minutes.
- **Background:** Present an overview of the problem (3-5 minutes).
- **Body:** Describe the methods you used and state the reasons for using them. Explain your procedures but don't try to provide a tutorial (8-10 minutes).
- **Conclusions:** Summarize your findings and discuss the implications (3-5 minutes).
- **Extras:** Prepare extra slides in case they are needed to clarify points or to help answer questions.
- **At most 20 slides are needed for the presentation, plus 10 extras.**
- **Practice, Practice, Practice:** Try to rehearse in front of people (students, faculty, or your advisor). Try to practice at least once.

You may find the following references helpful:

TITLE OF MPH PAPER

by

Student Name

A paper submitted to the faculty of the University of North Carolina in partial fulfillment of the requirements for the degree of Master of Public Health in the Department of Biostatistics

Chapel Hill

(DATE)

Approved by:

Advisor

Oral Presentation on: (DATE)

Chair of Seminar Committee
TITLE OF MS PAPER

by

Student Name

A paper submitted to the faculty of the University of North Carolina in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biostatistics

Chapel Hill

(DATE)

Approved by:

Advisor

Reader

Oral Presentation on: (date)

Chair of Seminar Committee
GUIDELINES FOR THE WRITTEN FORMAT DOCTORAL DISSERTATION

The Graduate School Thesis and Dissertation Guide
Visit: http://www.gradschool.unc.edu/etdguide/ to access detailed instructions.

Introduction

Please read this manual carefully before preparing your thesis/dissertation. Staff in the Enrolled Student Office of The Graduate School is available to assist you in preparing and submitting your thesis/dissertation. You are encouraged to call the office at (919) 962-6313 (last names A-G) or (919) 962-6316 (last names H-Z) or stop by Bynum Hall if you have questions about these guidelines. “IT IS THE RESPONSIBILITY OF THE STUDENT TO ENSURE THE DISSERTATION MEETS THE HIGHLY DETAILED, RIGOROUS GUIDELINES OF THE GRADUATE SCHOOL. STUDENTS ARE WarnED THAT IT MAY TAKE NUMEROUS ITERATIONS TO OBTAIN FORMAT APPROVAL FROM THE GRADUATE SCHOOL, AND STUDENTS SHOULD ANTICIPATE DELAYS. THE GRADUATE SCHOOL WILL PROVIDE FEEDBACK ON WHETHER DISSERTATIONS MEET THEIR GUIDELINES. STUDENTS WHO WAIT TO THE LAST MINUTE MAY BE DELAYED IN GRADUATION IF THEIR DISSERTATIONS ARE NOT IN THE APPROPRIATE FORMAT. The format found on G:\dissertation\templates is an excellent starting place, but students should anticipate having to make formatting changes even with this format, as the graduate school guidelines may change.”

This Guide is not meant to be an exhaustive manual. For specific questions of style, consult the most recent edition of the style manual used in your disciplinary field (e.g., Kate L. Turabian, A Manual for Writers of Term Papers, Theses, and Dissertations; The MLA Style Manual; and the American Psychological Association (APA) Style Manual). When using a style manual, follow the specifications for published documents, but do not include typesetting notations often used when submitting manuscripts to a publisher. Microsoft Word offers online assistance: Word 2007 training courses.

If there is a discrepancy between a style manual and this guide, the regulations set forth in this Graduate School guide take precedence. Please do not use another thesis/dissertation as a model for your work since a particular style or example in a previous year may not meet current guidelines. Also, certain commonly used software packages may require format modifications in order to comply with Graduate School guidelines.

Print complete guide (.pdf)
Introduction
I. Order and Components
 Order
 Title Page
 Copyright Page
 Abstract
 Dedication, Acknowledgements, Preface
 Table of Contents
 List of Tables
 List of Figures or Illustrations
 List of Abbreviations
 List of Symbols
II. Format
 Margins
 Font Type and Size
 Spacing and Indentation
 Pagination
 Footnotes and Endnotes
 Tables and Figures
 Appendices
 Bibliography/References
 Fees
Internet Distribution
III. Copyrighting
 Using Copyrighted Materials
 Use of Your Own Previously Published Materials
IV. Submission
 Checklist
 Sample Pages
POLICIES FOR CHANGING DEGREE PROGRAMS

Two requests for action by the Graduate Admissions Committee are described:

1) Proceeding from a Master's to a Doctoral Program; and, 2) Switching Between the Two Masters Programs or Between the Two Doctoral Programs.

REQUESTS TO PROCEED FROM A MASTER'S TO A DOCTORAL PROGRAM

A departmental Master’s student interested in continuing to a doctoral program should discuss these plans with his/her advisor. In particular, master’s students interested in proceeding to a doctoral program should seek advice early about any supplementary mathematics and biostatistics coursework needed (e.g., BIOS 660, 661, 662, 663, 667 and 680) and their prerequisites. Applicants to the DrPH program must have at least 12 months of acceptable full-time experience in public health, or have plans for completion of such experience, by the time of the proposed admission. To apply, students must provide a one-page statement of purpose that explains what they expect to gain from this doctoral training. In addition, each such student is to request his/her advisor to provide a letter of support for such doctoral training. Comments on research promise (perhaps as shown by plans for, or progress on, the Master’s paper) will be especially valuable. Students can apply for admission to a doctoral program after completion of one year in the program.

Requests for approval to proceed to a doctoral program are subject to review and recommendation by the Graduate Admissions Committee, which seeks information about the applicant from the advisor, as well as instructors of BIOS 660, 661, 662, 663, 667, 680 and other 500-level BIOS courses. The Department Chair reviews the Admissions Committee's recommendation for each student to proceed to a doctoral program, and with concurrence, notifies each such student the decision to proceed.

NOTE: A graduate student in the UNC-CH Department of Biostatistics will not be permitted to take any of the Department's Basic Doctoral Written Examinations until that student has been FORMALLY ADMITTED into a doctoral program in the UNC Department of Biostatistics. Such formal admission must come from the Department’s Admissions Committee.
REQUESTS TO SWITCH BETWEEN MASTER'S PROGRAMS OR DOCTORAL PROGRAMS

Each Master's admission and each doctoral admission is made for graduate study in a specific program (Master's: MS or MPH; doctoral: PhD or DrPH) by the Graduate Admissions Committee after careful consideration of the applicant's qualifications, experience, and requested program.

Each student wishing to switch between the two master's programs or between the two doctoral programs should confer with his/her advisor. If the advisor agrees with the rationale for switching master's (or doctoral) programs, the student should send the Director of Graduate Admissions a memorandum requesting the change and explaining the reason for it. In addition, a completed checklist for the new master's (or doctoral) program, and its accompanying supporting program, should be attached to describe how and when the prerequisites and requirements for the desired Master's (or doctoral) program have been or will be satisfied.

Such a request is subject to review by the Graduate Admissions Committee. Approval of the request is forwarded for final action by the Graduate School after the Chair's approval.

Note: Students seeking to switch from the DrPH to the PhD program will not be permitted to take the Theory Exam of the PhD Doctoral Basic Written Examination until formal admission to the PhD program has been granted.
INSTRUCTIONAL ASSISTANTS

DEFINITIONS

Instructional Assistant (IA) includes:
- Grading Assistant (GA). These are paid assistants (graders) or students who must satisfy the requirement as part of their training grant who do not teach.
- Teaching Assistant (TA). These include students formally enrolled in BIOS 850 and graduates of BIOS 850.

DUTIES AND COMPENSATION OF IAs

In what follows, the designation Instructional Assistant (IA) refers to either a Grading Assistant (GA) or a Teaching Assistant (TA). The TA designation refers to students who are taking BIOS 850 for credit in a particular semester. Without exception, TA positions are only available for service courses (e.g., BIOS 600 and BIOS 545) in the UNC Dept. of Biostatistics or for BIOS 662/663/664/65/667/680 if there are more than 20 non-bios SPH students (1 TA for 20-39 non-bios SPH students and 2 TAs for >= 40 non-bios SPH students). If there are more TA’s than service courses require, they may petition the Director of Graduate Studies to TA for other non-service BIOS courses, such as BIOS 663 and 664. See page 61 for more details.

Assignment of GA’s is as follows, BIOS classes having between 5 and 25 enrolled students will be permitted to have exactly one IA; BIOS classes having between 26 and 50 enrolled students will be permitted to have exactly two IAs; and, BIOS classes having over 50 enrolled students will be permitted to have exactly three IAs.

GAs that are not on a training grant will be compensated for their services. TAs will not be compensated for their services since they are receiving academic credit for BIOS 850. Decisions concerning the amount of compensation per course for GAs in any academic year will be made by the Chair of the UNC Department of Biostatistics prior to the start of the academic year.

BIOS student supported as a predoctoral trainee by a Federally-funded training grant in the UNC Department of Biostatistics will be required to serve without compensation as a GA for one course in each academic year in which that student receives training grant support.

Duties of GAs (graders)

The primary duties of GAs are:

1. Grading of examination questions requiring no subjective judgment (e.g., multiple-choice type) and of homework problems (whether subjective or objective). Policies on work turned in late, turnaround time for grading, and the like, should be negotiated between instructors and GAs in advance.

2. Holding office hours for up to 2 hours per week, during which time students, on a one-on-one basis, may receive further help as necessary. The time for office hours should be negotiated by instructors and GAs in advance. GAs are responsible for securing a suitable place for office hours through the Registrar.

3. Graders are expected to grade roughly 5 hours/week over the course of a semester, though the work is highly variable so that students should expect that some weeks may involve no grading while others involve a greater number of hours. **NOTE:** Other duties of benefit to the course
(e.g., copying, dataset management, maintaining class records) may be assigned to GAs when it is not convenient to use staff personnel instead. However, any such duties are to be at most incidental to the primary duties. Note also that Departmental policy does not permit GAs to grade subjective examinations, and GAs are never required to teach classes or give lectures.

4. The graders for 700 level courses should be initiated by the instructor for the course.

OBJECTIVES

By serving as GAs, BIOS students:

a. are stimulated to review and consolidate their knowledge;

b. receive a useful introduction to teaching activities, with which most will become involved as part of their careers;

c. acquire skill in communicating with members of other disciplines, which is essential for effectiveness as a biostatistician;

d. provide faculty with opportunities to observe their performance, which aid in evaluating the student and in writing effective and convincing recommendations.
DUTIES OF TAs

While the complete duties of a TA will necessarily vary depending on the particular faculty member and course, TAs are usually required to perform the following:

1. Conduct weekly laboratory or review sessions. While much of the time spent in the laboratory may be devoted to answering questions arising from the instructor’s lectures, homework, or examinations, the TA may be expected to prepare a brief review lecture or demonstration.

2. Meet with the instructor each week, prior to the laboratory session, to ensure that the TA understands the level and emphasis of the current lecture materials and homework assignments.

3. Present 1-2 regular class lectures during the semester, or weekly structured lab session, with the instructor observing and evaluating at least one lecture.

Subject to the limitation on time requirements stated below, the TA may additionally be required by the instructor to perform some or all of the following duties:

5. Assist in preparation of class materials such as handouts.

6. Assist in the preparation of homework and/or examinations, including solution guides.

7. Attend the instructor’s lectures and/or personally do the assigned homework.

8. Read, and/or discuss with the instructor, material on statistical pedagogy. (TAs enrolled in BIOS 850.

Time Requirements

TAs must pre-register for 3 hours of BIOS 850. A student can receive credit for BIOS 850 only once. This translates into 10 hours of work per week on average. TAs may not be expected to work more than an average of 15 hours per week during the semester. The instructor should be notified as soon as it appears that these time restrictions may be exceeded. All doctoral students are REQUIRED to register for BIOS 850 within three years of starting their program.
Resolution of Problems

If TAs cannot resolve problems involving these guidelines with the instructor, they should contact the Director of Graduate Studies. All TAs are strongly encouraged to submit an evaluation of their experiences to the DGS at the end of the semester so that these guidelines may be monitored more effectively.

QUALIFICATIONS OF IAs

IAs must be given responsibilities that commensurate with their qualifications.

a. All IAs must be enrolled graduate students, and in “good academic standing” (which implies that their academic performance represents reasonable progress toward the degree and warrants continuation in the program).

b. All IAs must have taken the courses in which they assist, or equivalent courses, except for elementary service courses.

c. All TAs must have demonstrated oral proficiency in English, as approved by the instructors of the courses in which they are to assist. Those TAs whose native language is not English must have passed the ETS Test of Spoken English (TSE) or some other formal screening test approved by the University.
SUPERVISION AND MENTORING OF IAs

IAs must be properly supervised and mentored in their roles.

GAs:

1. The instructor should review and discuss this section of the AIM with the GA prior to the start of the semester.

2. The instructor must provide the GA with at least a rough sketch of acceptable answers for all homework exercises and must also provide instructions regarding how to distribute points among the assigned questions.

3. The instructor should meet with the GA as needed so that the GA is informed about such matters as: progress through the course's text, which parts of the course (i.e., topics) typically require emphasis/explanations in the GA's individual help sessions, coverage of homework assignments, and dates for assigned homework and examinations.

TAs:

1. The instructor should review and discuss this section of the AIM with the TA prior to the start of the semester.

2. The instructor should meet with the TA each week so that the TA is informed about such matters as: progress through the course's text, which parts of the course (i.e., topics) typically require emphasis/explanations in the TA's weekly review and individual help sessions, coverage of homework assignments, and dates for assigned homework and examinations. In addition, the instructor should discuss at least the general outline of what is to be covered by the TA in the review/laboratory session so that the TA can provide additional explanations/details regarding what was covered in lectures.

3. The TA will ordinarily be required to give one or two of the general lectures during the semester, with the instructor observing and evaluating. In addition, the TA and the instructor should consider the desirability of having the TA’s weekly help session observed at least once during the semester in order to assess further the TA's overall progress in teaching.

4. The TA experience may be enriched by bringing the TAs together at the end of the semester to facilitate discussions among them and the faculty in order to share their experiences and to offer suggestions about how to improve the TA process.

EVALUATION OF IAs

IAs must be fairly evaluated, with public recognition when performance is outstanding.

a. The instructor of a class with one or more IAs is expected to survey the class near the end of the semester, as part of the course evaluation, about the quality of the supplemental instruction and assistance provided to the students by the IA. The results of the survey should be communicated to the IAs and reported to the DGS.
ASSIGNMENT OF IAs

IAs must be assigned in accordance with procedures that are open, reasonable, and fair.

a. The Registrar’s Office, in conjunction with faculty input, makes all IA assignments for the entire academic year. Non-service courses are not guaranteed to be assigned an IA unless 5 or more students are enrolled for credit. As a general guideline, BIOS service courses get 1 IA if 5 students are enrolled and get an additional 1A for each 25 students (total) enrolled. That is, a class with 25 students has 1 IA, 26 -50 students have 2 IA’s, etc. Any petition by a BIOS faculty member for extra IAs should be submitted in writing to the Director of Graduate Studies, who will then review the petition with the Departmental Chair.

b. If more students request enrollment in BIOS 850 than are required by the service courses, these additional TAs may be assigned to non-service courses. If there are still too many requests, then priority will be given to students who need BIOS 850 to satisfy degree requirements. Within this group, the more advanced students will be given priority. Other TAs will be assigned only to service courses, when there is an insufficient number of TAs enrolled in BIOS 850 to cover them. Service courses are defined as those for which the primary audience is non-BIOS majors; currently, these are BIOS courses numbered 600 and below.

c. For courses that require both GAs and TAs, TAs will always be given priority in being offered the position.
Kuebler Library

McGavran-Greenberg Room 3102 is named the Roy R. Kuebler Jr. Conference Room & Library in honor of the late Professor Kuebler (1911-1990), who was Deputy Chair of the Department for many years, and was known as a distinguished teacher of statistics. Here are housed two parts of the Departmental Library: the Archives and the Journal Collection. The Archives include Master's Papers and Doctoral Dissertations from the Department (including some early ones by students who were considered “ours” before we had a formal major in Biostatistics); these are bound in black with gold imprinting. There are also bound volumes of the collected papers of three of its illustrious faculty members: Professors Bernard Greenberg, Regina Elandt-Johnson, and Mindel Sheps. The Journal Collection includes current issues, and many back issues of the most important scientific journals for biostatisticians. More extensive online collections of statistical journals can be found on jstor or web of science through the university library web link hsl.unc.edu. The Kuebler Library is available as a reading room except when conferences are in progress. The materials in the Archives and Journal Collection are not to be removed except briefly for copying, unless by express permission of the Department Librarian, Christine Kantner.

Students' Reference Collection

This collection is located in Suite 3102. It contains about 300 items, including elementary and advanced texts, dictionaries, books of tables, and computer manuals; a searchable list is available in the Bios Library section of Bios Intranet https://internal.bios.unc.edu/. Checking out of materials is allowed via the website by selecting the ‘Check out’ button for that item. The time limit for checkouts is fourteen (14) days; fourteen (14) day renewals are allowed, but the item must be checked in and checked out again. Email notifications will be sent daily to anyone who has something checked out for more than 2 weeks. Reserved books are not allowed to be checked out.
BIOSTATISTICS COURSES

600 PRINCIPLES OF STATISTICAL INFERENCE (3). Prerequisite, knowledge of basic descriptive statistics. Major topics include elementary probability theory, probability distributions, estimation, tests of hypotheses, chi-squared procedures, regression, and correlation. Fall and spring. Herman-Giddens and Jiang

610 BIOSTATISTICS FOR LABORATORY SCIENTISTS (3). Prerequisite, elementary calculus. Introduces the basic concepts and methods of statistics, focusing on applications in the experimental biological sciences. Fall. Bair Crosslisted with BBSP 610.

500H INTRODUCTION TO BIOSTATISTICS (3). Prerequisites, Math 231 and 232. Co-requisite BIOS 511 recommended. Access to SAS software and MS Excel is required. A previous course in statistics (such as AP Statistics or STOR 151) is helpful but not required. Permission of the instructor is required for non-majors. An introductory course in probability, data analysis, and statistical inference designed for the background of BSPH Biostatistics students. Topics include sampling design, descriptive statistics, probability, confidence intervals, tests of hypotheses, chi-square distribution, sets of 2-way tables, power, sample size, ANOVA, non-parametric tests, correlation, and linear regression. Fall. Monaco

511 INTRODUCTION TO STATISTICAL COMPUTING AND DATA MANAGEMENT (4). Prerequisite, previous or concurrent course in applied statistics or permission of the instructor. Introduction to use of computers to process and analyze data, concepts and techniques of research data management, and use of statistical programming packages and interpretation. Focus is on the use of SAS for data management, with an introduction to use of SAS for reporting and analysis. Fall. Psioda

540 PROBLEMS IN BIOSTATISTICS (1 or more). Prerequisites to be arranged with the faculty in each case. A course for students of public health who wish to make a study of some special problem in the statistics of the life sciences and public health. Fall, spring, and summer.

541 QUANTITATIVE METHODS FOR HEALTH CARE PROFESSIONALS I (4). Prerequisite, permission of instructor. Course is designed to meet the needs of health care professionals who need to be able to critically appraise the design and analysis of medical and health care studies and intend to pursue academic research careers. Basics of statistical inference, analysis of variance, multiple regression, categorical data analysis, and an introduction to logistic regression and survival analysis. Emphasis is on applied data analysis of major health care studies. Not offered 2017-18.

542 QUANTITATIVE METHODS FOR HEALTH CARE PROFESSIONALS II (4). Prerequisites, BIOS 541 and permission of instructor. Continuation of BIOS 541; main emphasis is on logistic regression; other topics include exploratory data analysis and survival analysis. Not offered 2017-18.

545 PRINCIPLES OF EXPERIMENTAL ANALYSIS (3). Prerequisites, BIOS 600 or equivalent; a basic familiarity with a statistical software package (preferably SAS) that has the capacity to do multiple linear regression analysis; permission of the instructor except for majors in School of Public Health. Continuation of Biostatistics 600; the analysis of experimental and observational data, including multiple regression, and analysis of variance and covariance. Spring. Laux

550 BASIC ELEMENTS OF PROBABILITY AND STATISTICAL INFERENCE I (GNET 150) (4). Prerequisite, MATH 232 or equivalent. Fundamentals of probability, discrete and continuous distributions; functions of random variables; descriptive statistics; fundamentals of statistical inference, including estimation and hypothesis testing. Fall. Truong

660 PROBABILITY AND STATISTICAL INFERENCE I (3). Prerequisite, MATH 233 or equivalent. Probability theory; discrete and continuous random variables; expectation theory; bivariate and multivariate distribution theory; regression and correlation; linear functions of random variables; theory of sampling. Fall. Ivanova

661 PROBABILITY AND STATISTICAL INFERENCE II (3). Prerequisite, BIOS 660. Distribution of functions of random variables; Helmert transformation theory; central limit theorem and other asymptotic theory; estimation theory; maximum likelihood methods; hypothesis testing; power; Neyman-Pearson Theorem, likelihood ratio, score, and Wald tests; noncentral distributions. Spring. F. Lin
662 INTERMEDIATE STATISTICAL METHODS (4). Corequisites, BIOS 511, 550, or equivalents. Principles of study design, descriptive statistics, and sampling from finite and infinite populations, with particular attention to inferences about location and scale for one, two, or k sample situations. Both distribution-free and parametric approaches are considered. Gaussian, binomial, and Poisson models, one-way and two-way contingency tables, as well as related measures of association, are treated. Fall. Zhou

663 INTERMEDIATE LINEAR MODELS (4). Prerequisite, BIOS 662 or equivalent. Matrix-based treatment of regression, one-way and two-way ANOVA, and ANCOVA, emphasizing the general linear model and hypothesis, as well as diagnostics and model building. The course begins with a review of matrix algebra, and it concludes with some treatment of statistical power for the linear model and with binary response regression methods. Spring. Rashid

664 SAMPLE SURVEY METHODOLOGY (4). Prerequisite, BIOS 550 or equivalent or permission of the instructor. Fundamental principles and methods of sampling populations, with primary attention given to simple random sampling, stratified sampling, and cluster sampling. Also, the calculation of sample weights, dealing with sources of nonsampling error, and analysis of data from complex sample designs are covered. Practical experience in sampling is provided by student participation in the design, execution, and analysis of a sampling project. Spring. Shook-Sa

665 ANALYSIS OF CATEGORICAL DATA (3). Prerequisites, BIOS 550, 662, and 663 or equivalent. Introduction to the analysis of categorized data: rates, ratios, and proportions; relative risk and odds ratio; Cochran-Mantel-Haenszel procedure; survivorship and life table methods; linear models for categorical data. Applications in demography, epidemiology, and medicine. Fall. Koch and Schwartz

667 APPLIED LONGITUDINAL DATA ANALYSIS (3). Prerequisite: analysis of variance and (multiple) linear regression at the level of Bios 545 and/or Bios 663. Familiarity with matrix algebra is also useful. Univariate and multivariate repeated measures analysis of variance, general linear model for longitudinal data, linear mixed model, generalized linear and population-averaged models for non-normal responses. Estimation and inference, maximum and restricted maximum likelihood, fixed and random effects, balanced and unbalanced data. Fall. Qaqish

668 DESIGN OF PUBLIC HEALTH STUDIES (3). Prerequisites, BIOS 511, 545, 550, or equivalents. Statistical concepts in basic public health study designs: cross-sectional, case-control, prospective, and experimental (including clinical trials). Validity, measurement of response, sample size determination, matching and random allocation methods. Spring. Tan

669 WORKING WITH DATA IN A PUBLIC HEALTH RESEARCH SETTING (3). Prerequisite, BIOS 511, EPID 700, or permission of the instructor. This course provides a conceptual foundation and practical training to students who will be working with data from clinical trials or other public health research studies. Topics include SQL, producing, checking, and using analysis data sets, advanced reporting tools, using metadata, look-up tables and data-driven programming, and doing simulation with SAS. Spring. Roggenkamp

670 DEMOGRAPHIC TECHNIQUES I (3). Source and interpretation of demographic data; rates and ratios, standardization, complete and abridged life tables; estimation and projection of fertility, mortality, migration, and population composition. Fall. Suchindran and Bilsborrow

672 PROBABILITY AND STATISTICAL INFERENCE I (4). Prerequisite, MATH 233 or equivalent. Introduction to probability; discrete and continuous random variables; expectation theory; bivariate and multivariate distribution theory; regression and correlation; linear functions of random variables; theory of sampling; introduction to estimation and hypothesis testing. Taylor's series, Riemann, Stieltjes and Lebesgue integration, complex variables and Laplace transforms. Fall. Ivanova

673 PROBABILITY AND STATISTICAL INFERENCE II (4). Prerequisite, BIOS 660. Permission of the instructor for students lacking the prerequisite. Distribution of functions of random variables; central limit theorem and other asymptotic theory; estimation theory; hypothesis testing; Neyman-Pearson Theorem, likelihood ratio, score, and Wald tests; noncentral distributions. Advanced problems in statistical inferences, including information inequality, best unbiased estimators, Bayes estimators, asymptotically efficient estimation, nonparametric estimation and tests, simultaneous confidence intervals. Spring. F. Lin
680 INTRODUCTORY SURVIVORSHIP ANALYSIS (3). Prerequisite, BIOS 661 or permission of the instructor. Introduction to concepts and techniques used in the analysis of time to event data, including censoring, hazard rates, estimation of survival curves, regression techniques, applications to clinical trials. Spring. Hudgens

691 FIELD OBSERVATIONS IN BIOSTATISTICS (1). Field visits to, and evaluation of, major nonacademic biostatistical programs in the Research Triangle area. (Field fee $25). Fall. Monaco

735 STATISTICAL COMPUTING - BASIC PRINCIPLES AND APPLICATIONS (3). Prerequisites, BIOS 660, 661, 662, and 663; one programming class at the undergraduate level or equivalent training. This class teaches important concepts and skills for statistical software development using case studies. Topics include: C++ language basics, searching and sorting (hash functions, maps, linear and binary searches), software design and documentation, software compiling, testing, debugging, distribution, and maintenance, and some specific programming techniques such as recursion, enumeration, dynamic programming, and some machine linear methods such as penalized regression, clustering and classification. Not offered 2017-18

740 INTRODUCTION TO STATISTICAL LEARNING AND PERSONALIZED MEDICINE (3). Prerequisites BIOS 761 and 762. The first part of the course gives an introduction to statistical learning methods, including a complete review of supervised learning methods (discriminant analysis, kernel methods, nearest neighborhood, tree methods, neural network, support vector machine, random forest, and boosting methods) and unsupervised learning methods (principal component analysis, factor analysis, cluster analysis, multidimensional scaling, self-organizing maps). R-functions and real data demos are used for illustration. It also includes learning theory for supervised learning methods such as Bayesian error, concentration inequalities, VC-theory, risk bounds, etc. The second part of the course focuses on recent development of statistical methods for personalized medicine, with particular emphasis on using statistical learning methods. This part starts with potential outcome framework and concepts of dynamic treatment regimes, discusses the use of observational studies and sequentially randomized trials for this context, then introduces the methods based on reinforcement learning, Q-learning, A-learning, G-computation, and O-learning for optimal dynamic treatment regimes in personalized medicine. Spring, Zeng.

752 DESIGN AND ANALYSIS OF CLINICAL TRIALS (3) Prerequisites, BIOS 660, and 661 or permission of the instructor. Description: This course will introduce the methods used in clinical trials. Topics include dose-finding trials, allocation to treatments in randomized trials, sample size calculation, interim monitoring, and non-inferiority trials. Not offered 2017-18

756 INTRODUCTION TO NONPARAMETRIC STATISTICS (STAT 171) (3). Prerequisite, BIOS 661 or equivalent. Theory and application of nonparametric methods for various problems in statistical analysis. Includes procedures based on randomization, ranks, and U-statistics. A knowledge of elementary computer programming is assumed. Not offered 2017-18.

759 APPLIED TIME SERIES ANALYSIS (3). Prerequisites, BIOS 661 and 663 or equivalents, and permission of the instructor. Topics include correlograms, periodograms, fast Fourier transforms, power spectra, cross-spectra, coherences, ARMA and transfer-function models, spectral-domain regression. Real and simulated data sets are discussed and analyzed using popular computer software packages. Not offered 2017-18.

760 ADVANCED PROBABILITY AND STATISTICAL INFERENCE I (4). Prerequisite, BIOS 673 or permission of the instructor. Measure space, sigma-field, Lebesgue measure, measureable functions, integration, Fubini-Tonelli theorem, Radon-Nikodym theorem, probability measure, conditional probability, independence, distribution functions, characteristic functions, exponential families, convergence almost surely, convergence in probability, convergence in distribution, Borel-Cantelli lemma, strong law of large numbers, central limit theorem, the Cramer-Wold device, delta method, U-statistics, martingale central limit theorem. Least squares estimation, uniformly minimal variance and unbiased estimation, estimating functions, maximum likelihood estimation, Cramer-Rao lower bound, information bounds, LeCam’s lemmas, consistency, asymptotic efficiency, expectation-maximization algorithm, nonparametric maximum likelihood estimation. Fall. Kosorok

761 ADVANCED PROBABILITY AND STATISTICAL INFERENCE II (4). Prerequisite, BIOS 760 or permission of the instructor. Description: Elementary decision theory, utility, admissibility, minimax rules, loss functions, Bayesian decision theory, likelihood ratio, Wald, and score tests, Neyman-Pearson tests, UMP and unbiased tests, rank tests, contiguity theory, confidence sets, parametric and nonparametric bootstrap methods, jackknife and cross-validation, asymptotic properties of resampling methods. Penalized likelihood, regularization methods, and classification. Spring. Q. Li
762 THEORY AND APPLICATIONS OF LINEAR AND GENERALIZED LINEAR MODELS (4). Prerequisites, BIOS 661 and 663, MATH 547, MATH 422or 577. Topics include matrix theory, the multivariate normal distribution, quadratic forms, estimability for linear models, estimation theory for linear and generalized linear models, weighted least squares, multivariate tests of linear hypotheses for linear and generalized linear models, multiple comparisons, confidence regions, analysis of variance, categorical data and contingency tables, case control studies, over-dispersion, quasi-likelihood, and generalized estimating equations. Fall, Ibrahim

764 ADVANCED SURVEY SAMPLING METHODS (3). Prerequisite, BIOS 664 or equivalent. Continuation of Biostatistics 664 for advanced students: stratification, special designs, multistage sampling, cost studies, nonsampling errors, complex survey designs, employing auxiliary information, and other miscellaneous topics. Not offered 2017-18.

767 LONGITUDINAL DATA ANALYSIS (4). Prerequisite, BIOS 762. Presents modern approaches to the analysis of longitudinal data. Topics include linear mixed effects models, generalized linear models for correlated data (including generalized estimating equations), computational issues and methods for fitting models, and dropout or other missing data. Spring. Qaqish

771 DEMOGRAPHIC TECHNIQUES II (3). Prerequisites, BIOS 670 and integral calculus. Life table techniques; methods of analysis when data are deficient; population projection methods; interrelations among demographic variables; migration analysis; uses of population models. Not offered 2017-18.

772 STATISTICAL ANALYSIS OF MRI IMAGES (3). Prerequisite, BIOS 761 and 762. This course reviews major statistical methods for the analysis of MRI data and its applications in various studies. Not offered 2017-18.

773 STATISTICAL ANALYSIS WITH MISSING DATA (3). Prerequisite BIOS 761 and 762. This course will examine fundamental concepts in missing data, including classifications of missing data, missing covariate and/or response data in linear models, generalized linear models, models for longitudinal data, and survival models. Several missing data methodologies will be discussed including maximum likelihood methods, multiple imputation, fully Bayesian methods and weighted estimating equations. Applications in the biomedical sciences will be presented in detail and several cases studies will be examined. Software packages for analyzing missing data include WinBUSG, SAS and R. Not offered 2017-18.

775 STATISTICAL METHODS IN DIAGNOSTIC MEDICINE (3). Prerequisites Bios 761, 762. Material will involve statistical concepts and techniques for evaluating medical diagnostic tests and biomarkers for the detection of disease. Measures for quantifying test accuracy will be discussed. Statistical procedures will be presented for estimating and comparing these quantities, including regression modelling. Worked examples of real data will be used to illustrate the methods. Recent developments in the literature will be covered, with potential areas for further research highlighted and presented for discussion in class. Spring, Fine

776 CAUSAL INFERENCE IN BIOMEDICAL RESEARCH (3). Prerequisite BIOS 661 and 663, or permission of instructor. This course will consider drawing inference about causal effects in a variety of settings using the potential outcomes framework. Topics covered include causal inference in randomized experiments and observational studies, bounds and sensitivity analysis, propensity scores, graphical models, and other areas. Not offered 2017-18

777 MATHEMATICAL MODELS IN DEMOGRAPHY (3). Prerequisite, permission of the instructor. A detailed presentation of natality models, including necessary mathematical methods, and applications; deterministic and stochastic models for population growth, migration. Not offered 2017-18.

779 BAYESIAN STATISTICS (4). Prerequisite, BIOS 762 or equivalent. Description: This course examines basic aspects of the Bayesian paradigm in the context of observational studies and clinical trials. Topics include Bayes’ theorem, the likelihood principle, prior distributions, posterior distributions, and predictive distributions. General topics include Bayesian modeling (including linear, generalized linear, hierarchical, and survival models), informative prior elicitation, model comparisons, Bayesian diagnostic methods, variable subset selection, and model uncertainty. Markov chain Monte Carlo methods for computation are discussed in detail. Fall, Ibrahim
780 THEORY AND METHODS FOR SURVIVAL ANALYSIS (3). Prerequisites, BIOS 760 and 761 or permission of the instructor. Counting process-martingale theory, Kaplan-Meier estimator, weighted log-rank statistics, Cox proportional hazards model, nonproportional hazards models, multivariate failure time data. Fall, Lin

781 STATISTICAL METHODS IN GENETIC MAPPING (4). Prerequisites, BIOS 661 and 663 or permission of the instructors. An introduction to statistical methods commonly used in analyzing animal, plant and human genetic data, with a focus on decomposition of trait variation, linkage analysis, disease mapping and association studies. Specifically, the course covers 1) basic population and quantitative genetic principles, including classical genetics, chromosomal theory of inheritance, and meiotic recombination; 2) QTL mapping methods of complex quantitative traits and linkage methods to detect co-segregation with disease; 3) methods for assessing marker-disease linkage disequilibrium, including case-control approaches, and 4) methods for genome-wide association and stratification control. Not offered 2017-18.

782 STATISTICAL METHODS IN GENETIC ASSOCIATION STUDIES (3) Prerequisites, permission of the instructor. This course provides a comprehensive survey of the statistical methods that have been recently developed for the designs and analysis of genetic association studies. Specific topics include molecular and population genetics, candidate-gene and genome-wide association studies, likelihood inference and EM algorithm, case-control sampling and retrospective likelihood, secondary phenotypes in case-control studies, haplotypes and untyped SNPs, population stratification, meta-analysis, multiple testing, winner’s curse, copy number variants, next-generation sequencing studies, rare variants, trait-dependent sampling, variable selection, and risk prediction. This course is targeted primarily at the PhD students and will be taught at a rigorous statistical level. The students will learn the theoretical justifications for the methods as well as the skills to apply them to real studies. They will also be exposed to current research topics and open problems. Not offered 2017-18

784 INTRODUCTION TO COMPUTATIONAL BIOLOGY (3). Prerequisites, BIOS 661 and 663, or permission of the instructor. Description: molecular biology, the construction of physical and genomic maps, cloning, sequence assembly, sequence analysis, DNA-RNA protein sequence alignment, sequence patterns, hidden Markov models, matching statistics and the Poisson approximation, discovery of functional motifs via likelihood and Monte Carlo Bayesian approaches, modeling secondary structure, computational algorithms, statistical software, applications to cancer. Fall, Love

785 STATISTICAL METHODS FOR DNA MICROARRAY DATA (3). Prerequisites, BIOS 661 and 663, or permission of the instructor. Description: Clustering algorithms, classification techniques, statistical techniques for analyzing multivariate data, analysis of high dimensional data, parametric and semiparametric models for DNA microarray data, measurement error models, Bayesian methods for analyzing microarray data, statistical software for analyzing microarray data, sample size determination in microarray studies, applications to cancer. Not offered 2017-18.

791 EMPIRICAL PROCESSES AND SEMIPARAMETRIC INFERENCE (3). Prerequisites: BIOS 761 or consent of instructor. Description: Theory and applications of empirical process methods to semiparametric estimation and inference for statistical models with both finite and infinite dimensional parameters. Topics include the bootstrap, Z-estimators, M-estimators, semiparametric efficiency. Not offered 2017-18.

841 PRINCIPLES OF STATISTICAL CONSULTING (3). Instructor consent if not a major in the department. Familiarity with either SAS and/or R will be assumed. Students must have completed all courses required for their current degree program or be currently enrolled in remaining required courses. An introduction to the statistical consulting process, the goal of this course is to develop in each student the skills necessary for being a statistical collaborator/consultant of the highest caliber. Emphasized topics include problem solving, study design, data analysis, ethical conduct, teamwork, career paths, data management, and both written and oral communication with scientists and other potential collaborators. Spring. Stewart and Weaver

842 PRACTICE IN STATISTICAL CONSULTING (3). Prerequisites, BIOS 511, 545, 550 or equivalents, and permission of the instructor. Bios 841 is a co-requisite. Under supervision of a faculty member, the student interacts with research workers in the health sciences, learning to abstract the statistical aspects of substantive problems, to provide appropriate technical assistance, and to communicate statistical results. The practicum provides students on opportunity to apply the knowledge and skills being acquired through their coursework and further develop and demonstrate attainment of program competencies. Fall, spring, and summer.
843 SEMINAR IN BIOSTATISTICS (1). Fall and spring. Staff.

844 LEADERSHIP IN BIOSTATISTICS (3). Prerequisites, BIOS 841. Using lectures, guest speakers and group exercises, students are taught fundamentals of leadership, plus where and how biostatisticians can offer leadership in both academic and non-academic public health settings. Topics include leadership styles, 1-on-1 communication, strategic planning, motivation, team management, presentation skills, financial leadership, negotiation, decision making, work-life balance, and more. Guest speakers are biostatisticians in prominent leadership roles in industry, government, academia, and service. Not offered 2017-18.

850 TRAINING IN STATISTICAL TEACHING IN THE HEALTH SCIENCES (3). Prerequisite, a minimum of one year of graduate work in statistics. Principles of statistical pedagogy. Students assist with teaching elementary statistics to students in the health sciences. Students work under the supervision of the faculty, with whom they have regular discussions of methods, content, and evaluation of performance. Fall, spring, and summer.

889 RESEARCH SEMINAR IN BIOSTATISTICS (1-3). Prerequisite, permission of the instructor. Seminar on new research developments in selected biostatistical topics. Fall and spring.

900 RESEARCH IN BIOSTATISTICS (2 or more). Individual arrangements may be made by the advanced student to spend part or all of his or her time in supervised investigation of selected problems in statistics. Fall, spring, and summer.

992 MASTER’S PAPER (3 or more). Fall, spring, and summer.

993 MASTER’S THESIS (3 or more). Fall, spring, and summer.

994 DOCTORAL DISSERTATION (Minimum of 3). Fall, spring, and summer.
SPECIAL INTERESTS OF CURRENT BIOSTATISTICS FACULTY

Robert Agans
Clinical Associate Professor and Co-Director, Carolina Survey Research Laboratory (CSRL)
PHD 1992 – Texas A&M University
Interest(s): Population –based Research Methods, Multi-mode Data Collection Procedures
Questionnaire Development, Standardization and Validation, Hard-to-reach Populations & Minorities

Eric Bair
Research Associate Professor (Joint with School of Dentistry)
PhD 2004 – Stanford University
Interest(s): Machine Learning, Statistical Genetics

Richard E. Bilsborrow
Research Professor
PhD 1968 - University of Michigan
Interest(s): Economic Demography, Demography, Population and Environment, Data Collection

Jianwen Cai
Cary Boshamer Distinguished Professor and Vice Chair
PhD 1992 - University of Washington
Interest(s): Survival Analysis, Regression Models, Clinical Trials, Analysis of Correlated Responses

Ding-Geng Chen
Wallace H. Kuralt Distinguished Professor (Joint with School of Social Work)
PhD 1995 – University of Guleph, Canada
Interest(s): Bayesian Model, Survival Analysis, Longitudinal Data Analysis, Multi-level Modelling, Structure Equation Models

David Couper
Clinical Professor and Deputy Director, Collaborative Studies Coordinating Center (CSCC)
PhD 1994 - University of Washington
Interest(s): Epidemiological Methods, Longitudinal Data, Data Quality Clinical Trials, Observational Studies,

Jamie L. Crandell
Research Assistant Professor (Joint with School of Nursing)
PhD 2006 – University of North Carolina at Chapel Hill
Interest(s): Bayesian Methods, Longitudinal Data

Jason P. Fine
Professor (Joint with Statistics and Operations Research-STOR)
ScD 1998 – Harvard University
Interest(s): Biostatistical Methodology, Clinical Trials, Observational Studies

Annie Green Howard
Clinical Assistant Professor
PHD 2012-University of North Carolina at Chapel Hill
Interest(s): Missing Data, Longitudinal and Correlated data, Latent variables, Structural Equation Models, Cardiovascular Disease, Global Health

Michael G. Hudgens
Professor
PHD 2000 – Emory University
Interest(s): Causal Inference, Epidemiology, Infectious Diseases, Survival Analysis

Joseph G. Ibrahim
Alumni Distinguished Professor and Director of Graduate Studies and Director, Center for Innovative Clinical Trials (Joint with Statistics and Operations Research-STOR)
PhD 1988 – University of Minnesota
Interest(s): Bayesian Inference, Missing Data Problems, Survival Analysis, Generalized Linear Models
Anastasia Ivanova
Associate Professor
PhD 1992 – St. Petersburg State University, Russia
PhD 1998 – University of Maryland
Interest(s): Adaptive designs, Enrichment designs, Randomization, Dose-finding methods and Adaptive Designs

Yuchao Jiang
Assistant Professor
PhD 2017 – University of Pennsylvania
Interest(s): Statistical modeling, methods development, and data analysis in genetics/genomics

Gary G. Koch
Professor and Director, Biometric Consulting Laboratory (BCL)
PhD 1968 - University of North Carolina at Chapel Hill
Interest(s): Categorical Data Analysis, Nonparametric Methods

Michael R. Kosorok
W. R. Kenan, Jr. Distinguished Professor and Chair (Joint with Statistics and Operations Research-STOR)
PhD 1991 - University of Washington
Interest(s): Biostatistics, Data Science, Machine Learning, Precision Medicine

Quefeng Li
Assistant Professor
PhD 2013 – University of Wisconsin at Madison
Interest(s): Classification, variable selection, robust estimation and inference of high dimensional data, meta-analysis, personalized medicine

Yun Li
Associate Professor (Joint with Department of Genetics)
PhD 2009 – University of Michigan
Interest(s): Statistical Genetics

Danyu Lin
Dennis Gillings Distinguished Professor
PhD 1989 – University of Michigan
Interest(s): Statistical Genetics, Survival Analysis, Design and Analysis of Medical Studies

Feng-Chang Lin
Research Assistant Professor
PhD 2008 – University of Wisconsin, Madison
Interest(s): Point Process Models, Survival Analysis, Longitudinal Analysis, Neuroscience, Madison Cardiovascular Disease

Yufeng Liu
Professor (Joint with Statistics and Operations Research-STOR)
PhD – The Ohio State University
Interest(s): Statistical machine learning and data mining, bioinformatics

Matthew Loop
Clinical Assistant Professor
PhD 2015 – University of Alabama at Birmingham
Interest(s): Statistical genetics, hypertension, cardiovascular disease, health care data

Michael Love
Assistant Professor (Joint with Department of Genetics)
Dr. rer. nat. 2013, Freie Universitat, Berlin
Interest(s): Computational Biology, Statistical Methods for Investigating High-dimensional Biological Datasets

Jane H. Monaco
Clinical Associate Professor and Director of Undergraduate Studies
DrPH 2003 – University of North Carolina at Chapel Hill
Interest(s): Survival Analysis, Statistics Education
James S. Marron
Amos Hawley Distinguished Professor, (Joint with Statistics and Operations Research-STOR)
PhD 1982 – University of California at Los Angeles
Interest(s): Smoothing Methods for Curve Estimation

Andrew B. Nobel
Professor (Joint with Statistics and Operations Research-STOR)
PhD 1992 – Stanford University
Interest(s): Statistical Analysis of Gene Expression Data Analysis and Simulation of Internet Traffic Pattern Recognition and Machine Learning Data Mining

John S. Preisser, Jr
Research Professor
PhD 1995 - University of North Carolina at Chapel Hill
Interest(s): Categorical Data, Longitudinal Data Analysis, Oral Health, Cluster-randomized Trials

Matt Psioda
Research Assistant Professor
PhD 2016 - University of North Carolina at Chapel Hill
Interest(s): Bayesian Clinical Trial Design, Computational and Statistical Epigenomics, Bayesian Computation

Bahjat Qaqish
Professor
PhD 1990 - Johns Hopkins University
Interest(s): Generalized Linear Models, Correlated Discrete Data, Survival Analysis, Statistical Computing, Statistical Methods in Epidemiology

Naim Rashid
Research Assistant Professor (Joint with Lineberger Comprehensive Cancer Center-LCCC)
PhD 2013 – University of North Carolina at Chapel Hill
Interest(s): High Dimensional Data Analysis, Cancer, Variable Selection, Genomics, Statistical Genetics, Next Generation Sequencing Data Analysis, Classification

Todd A. Schwartz
Research Associate Professor (Joint with School of Nursing)
DrPH 2004 – University of North Carolina at Chapel Hill
Interest(s): Mixed Models, GEE, Categorical Data Analysis, Clinical Trials

Pranab K. Sen
Cary Boshamer Distinguished Professor (Joint with Statistics and Operations Research-STOR)
PhD 1962, DSC 2012 - Calcutta University
Interest(s): Nonparametric Multivariate Analysis, Large Sample Theory, Sequential Methods, Survival Analysis, Stochastic Processes

Richard L. Smith
Mark L. Reed Distinguished Professor (Joint with Statistics and Operations Research-STOR)
PhD 1979 – Cornell University
Interest(s): Spatial Statistics, Time Series Analysis, Extreme Value Theory and Bayesian Statistics

Daniela Sotres-Alvarez
Research Assistant Professor
DrPH 2010 - University of North Carolina at Chapel Hill
Interest(s): Linear Mixed Models, Latent Variable Models, Dietary and Physical Activity Patterns

Paul W. Stewart
Research Professor
PhD 1981 - University of North Carolina at Chapel Hill
Interest(s): Linear Models, Incomplete or Censored Longitudinal Data, Pediatric Research, and Pulmonary Research

Chirayath M. Suchindran
Professor and Director of Graduate Admissions
PhD 1972 - University of North Carolina at Chapel Hill
Interest(s): Statistical Demography
Xianming Tan
Research Associate Professor
PhD 2005 – Nankai University
Interest(s): Design and Analysis of Clinical Trials, Model-based Clustering, Longitudinal Data Analysis, Survival Data Analysis

Sonia Davis Thomas
Professor of the Practice
DrPH 1994- University of North Carolina at Chapel Hill
Interest(s): Clinical Trials, Non-inferiority, Interim Analysis, Missing Data, Multiple Comparisons Mixed Models

Kinh N. Truong
Professor
PhD 1985 - University of California at Berkeley
Interest(s): Extended Linear Models, Functional Modeling, Hazard Regression, Time Series, Neuro Modeling, and Biochemical Epidemiology

Mark Weaver
Research Assistant Professor (Joint with School of Medicine)
PhD 2001- University of North Carolina at Chapel Hill
Interest(s): Outcome Dependent Sampling

Di Wu
Research Assistant Professor (Joint with School of Dentistry)
PhD 2011 – Walter and Eliza Institute of Medical Research, University of Melbourne, Australia
Interest(s): Statistical Methods for High Dimensional Omics Data

Donglin Zeng
Professor and Co-Director, Carolina Survey Research Laboratory (CSRL)
PhD 2001 – University of Michigan
Interest(s): High dimensional data, Survival Analysis

Haibo Zhou
Professor
PhD 1992 - University of Washington
Interest(s): Missing/auxiliary Data, Survival Analysis, Human Fertility, Statistical Methods in Epidemiology, Toxicology Risk Assessment

Hongtu Zhu (on leave)
Professor
PhD 2000 – The Chinese University of Hong Kong
Interest(s): Imaging Statistics, Latent Variable Models

Fei Zou
Professor
PhD 2001 – University of Wisconsin
Interest(s): Statistical Genetics, Empirical Likelihood, Bioinformatics
CEPH COMPETENCY MATRICES

The following matrices correspond to the CEPH competencies for each degree from the 2017 CEPH Gillings SPH Self-Report, with updates for 2017/2018.

- BSPH: PH Core Competencies and Degree- Specific Competencies
- MPH: PH Core Competencies and Degree- Specific Competencies
- MS: Degree-Specific Competencies
- DrPH: Degree-Specific Competencies
- PhD: Degree-Specific Competencies

CEPH Public Health Core Competencies
Degree: BSPH
Department: Biostatistics

Courses listed are required unless otherwise indicated.

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIOS 500H (P)</td>
<td>BIOS 545 (R) Linear Models</td>
<td>BIOS 550 (R) Elementary Biostatistical Theory</td>
<td>BIOS 664 (R) Survey Sampling</td>
<td>BIOS 668 (R) Design of Public Health Trials</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>Many students complete internships in biostatistics—particularly at CROs (elective)</td>
</tr>
<tr>
<td>1. Describe the roles biostatistics serves in the discipline of public health</td>
<td>BIOS 500H (P)</td>
<td>BIOS 545 (R) Linear Models</td>
<td>BIOS 550 (R) Elementary Biostatistical Theory</td>
<td>BIOS 664 (R) Survey Sampling</td>
<td>BIOS 668 (R) Design of Public Health Trials</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>Many students complete internships in biostatistics—particularly at CROs (elective)</td>
</tr>
<tr>
<td>2. Distinguish among the different measurement scales and the implication for selection of statistical methods to be used based on these directions</td>
<td>BIOS 500H (P)</td>
<td>BIOS 545 (R) Linear Models</td>
<td>BIOS 550 (R) Elementary Biostatistical Theory</td>
<td>BIOS 664 (R) Design of Public Health Trials</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>Many students complete internships in biostatistics—particularly at CROs (elective)</td>
<td></td>
</tr>
<tr>
<td>3. Apply descriptive techniques commonly used to summarize public health data</td>
<td>BIOS 500H (P)</td>
<td>BIOS 545 (R) Linear Models</td>
<td>BIOS 550 (R) Elementary Biostatistical Theory</td>
<td>BIOS 664 (R) Survey Sampling</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>Many students complete internships in biostatistics—particularly at CROs (elective)</td>
<td></td>
</tr>
<tr>
<td>4. Describe basic concepts of probability, random variation and commonly used probability distributions</td>
<td>BIOS 500H (P)</td>
<td>BIOS 545 (R) Linear Models</td>
<td>BIOS 550 (R) Elementary Biostatistical Theory</td>
<td>BIOS 664 (R) Survey Sampling</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>Many students complete internships in biostatistics—particularly at CROs (elective)</td>
<td></td>
</tr>
<tr>
<td>5. Apply common statistical methods for inference</td>
<td>BIOS 500H (P)</td>
<td>BIOS 545 (R) Linear Models</td>
<td>BIOS 550 (R) Elementary Biostatistical Theory</td>
<td>BIOS 664 (R) Survey Sampling</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>Many students complete internships in biostatistics—particularly at CROs (elective)</td>
<td></td>
</tr>
<tr>
<td>6. Describe preferred methodological alternatives according to the type of study design for answering a particular research question</td>
<td>BIOS 500H (P)</td>
<td>BIOS 545 (R) Linear Models</td>
<td>BIOS 550 (R) Elementary Biostatistical Theory</td>
<td>BIOS 664 (R) Survey Sampling</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>Many students complete internships in biostatistics—particularly at CROs (elective)</td>
<td></td>
</tr>
<tr>
<td>7. Apply descriptive and inferential methodologies according to the type of study design for answering a particular research question</td>
<td>BIOS 500H (P)</td>
<td>BIOS 545 (R) Linear Models</td>
<td>BIOS 550 (R) Elementary Biostatistical Theory</td>
<td>BIOS 664 (R) Survey Sampling</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>Many students complete internships in biostatistics—particularly at CROs (elective)</td>
<td></td>
</tr>
</tbody>
</table>

Published: 9/22/2017 2:37 PM: EDITION 2017-18
Table 2.6.1: Courses and activities through which public health core competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Interpret results for statistical analysis found in public health</td>
<td>BIOS 500H (P)</td>
<td>BIOS 545 (R)</td>
<td>BIOS 669 (R)</td>
<td>BIOS 686 (R)</td>
<td>BIOS 684 (R)</td>
<td></td>
<td>Some students complete a senior honors project in biostatistics elective</td>
</tr>
<tr>
<td></td>
<td>Introduction to Applied Biostatistics (Honors)</td>
<td>Linear Models</td>
<td>Working with Data in PH Research (elective)</td>
<td>Design of Public Health Trials</td>
<td>Survey Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Develop written and oral presentations based on statistical analyses for public health professionals and educated lay audiences</td>
<td>BIOS 500H (P)</td>
<td>BIOS 664 (R)</td>
<td>BIOS 511 (R)</td>
<td>BIOS 668 (R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Applied Biostatistics (Honors)</td>
<td>Survey Sampling</td>
<td>Data management and SAS programming</td>
<td>Design of Public Health Trials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Apply basic informatics techniques with vital statistics and public health records. In the description of public health characteristics and in public health research and evaluation</td>
<td>BIOS 500H (P)</td>
<td>BIOS 664 (R)</td>
<td>BIOS 500H (R)</td>
<td>BIOS 691 (R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Applied Biostatistics (Honors)</td>
<td>Survey Sampling</td>
<td>Introduction to Applied Biostatistics (Honors)</td>
<td>Field Obs. in Biostatistics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental Sciences and Engineering

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Specify approaches for assessing, preventing and controlling environmental hazards that pose risks to human health and safety</td>
<td>ENVR 600 (P) Environ. Health</td>
<td>BIOS 500H (R) Introduction to Applied Biostatistics (Honors)</td>
<td></td>
</tr>
<tr>
<td>2. Describe the direct and indirect human, ecological and safety effects of major environmental and occupational agents</td>
<td>ENVR 600 (P) Environ. Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Specify current environmental risk assessment methods</td>
<td>ENVR 600 (P) Environ. Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Describe genetic, physiologic and psychosocial factors that affect susceptibility to adverse health outcomes following exposure to environmental hazards</td>
<td>ENVR 600 (P) Environ. Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Discuss various risk management and risk communication approaches in relation to issues of environmental justice and equity</td>
<td>ENVR 600 (P) Environ. Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Explain the general mechanisms of toxicity in eliciting a toxic response to various environmental exposures</td>
<td>ENVR 600 (P) Environ. Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Develop a testable model of environmental insult</td>
<td>ENVR 600 (P) Environ. Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Describe federal and state regulatory programs, guidelines and authorities that control environmental health issues</td>
<td>ENVR 600 (P) Environ. Health</td>
<td>BIOS 691 (R) Field Obs. in Biostatistics</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6.1: Courses and activities through which public health core competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Explain the application of epidemiology for informing scientific, ethical, economic and political discussion of health issues</td>
<td>EPID 600 (P) Principles of Epidemiology</td>
<td>BIOS 500H (R) Introduction to Applied Biostatistics (Honors)</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Apply the basic terminology and definitions of epidemiology</td>
<td>EPID 600 (P) Principles of Epidemiology</td>
<td>BIOS 500H (R) Introduction to Applied Biostatistics (Honors)</td>
<td>BIOS 668 (R) Design of Public Health Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Identify key sources of data for epidemiologic reports</td>
<td>EPID 600 (P) Principles of Epidemiology</td>
<td>BIOS 500H (R) Introduction to Applied Biostatistics (Honors)</td>
<td>BIOS 668 (R) Design of Public Health Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Calculate basic epidemiology measures</td>
<td>EPID 600 (P) Principles of Epidemiology</td>
<td>BIOS 500H (R) Introduction to Applied Biostatistics (Honors)</td>
<td>BIOS 545 (R) Linear Models Design of Public Health Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Evaluate the strengths and limitations of epidemiologic reports</td>
<td>EPID 600 (P) Principles of Epidemiology</td>
<td>BIOS 500H (R) Introduction to Applied Biostatistics (Honors)</td>
<td>BIOS 550 (R) Elementary Biostatistical Theory Design of Public Health Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Draw appropriate inferences from epidemiologic data</td>
<td>EPID 600 (P) Principles of Epidemiology</td>
<td>BIOS 500H (R) Introduction to Applied Biostatistics (Honors)</td>
<td>BIOS 668 (R) Design of Public Health Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Communicate epidemiologic information to lay and professional audiences</td>
<td>EPID 600 (P) Principles of Epidemiology</td>
<td>BIOS 500H (R) Introduction to Applied Biostatistics (Honors)</td>
<td>BIOS 668 (R) Design of Public Health Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Comprehend basic ethical and legal principles pertaining to the collection, maintenance, use and dissemination of epidemiologic data</td>
<td>EPID 600 (P) Principles of Epidemiology</td>
<td>BIOS 500H (R) Introduction to Applied Biostatistics (Honors)</td>
<td>BIOS 668 (R) Design of Public health Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Identify the principles and limitations of public health screening programs</td>
<td>EPID 600 (P) Principles of Epidemiology</td>
<td>BIOS 500H (R) Introduction to Applied Biostatistics (Honors)</td>
<td>BIOS 668 (R) Design of Public health Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Health Behavior and Health Education

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the role of social and community factors in both the onset and solution of public health problems.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Identify the causes of social and behavioral factors that affect health of individuals and populations.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Identify basic theories, concepts and models from a range of social and behavioral disciplines that are used in public health research and practice.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6.1: Courses and activities through which public health core competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Apply ethical principles to public health program planning, implementation and evaluation.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>HPM 600 (R) Intro to Health Policy and Man.</td>
<td>BIOS 500H (R) Introduction to Applied Biostatistics (Honors)</td>
<td>BIOS 668 (R) Design of Public Health Trials</td>
<td>HPM 600 (R) Intro to Health Policy and Management</td>
<td></td>
</tr>
<tr>
<td>5. Specify multiple targets and levels of intervention for social and behavioral science programs and/or policies.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>HPM 600 (R) Intro to Health Policy and Man.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Identify individual, organizational and community concerns, assets, resources and deficits for social and behavioral science interventions.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>HPM 600 (R) Intro to Health Policy and Man.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Use evidence-based approaches in the development and evaluation of social and behavioral science interventions.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>HPM 600 (R) Intro to Health Policy and Man.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Describe the merits of social and behavioral science interventions and policies.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>HPM 600 (R) Intro to Health Policy and Man.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Describe steps and procedures for the planning, implementation and evaluation of public health programs, policies and interventions.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>HPM 600 (R) Intro to Health Policy and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Identify critical stakeholders for the planning, implementation and evaluation of public health programs, policies and interventions.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>HPM 600 (R) Intro to Health Policy and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Health Policy and Management

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the main components and issues of the organization, financing, and delivery of health services in the U.S.</td>
<td>HPM 600 (P) Intro to Health Policy and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Discuss the policy process for improving the health status of populations.</td>
<td>HPM 600 (P) Intro to Health Policy and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Describe the legal and ethical bases for public health and health services.</td>
<td>HPM 600 (P) Intro to Health Policy and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Apply quality and performance improvement concepts to address organizational performance issues.</td>
<td>HPM 600 (P) Intro to Health Policy and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Use "systems thinking" for resolving organizational problems.</td>
<td>HPM 600 (P) Intro to Health Policy and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6.1: Courses and activities through which public health core competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Use the principles of program planning, development, budgeting, management and evaluation to organizational and community initiatives</td>
<td>HPM 600 (P) Intro to Health Policy and Management</td>
<td>HBEH 600 (R) Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Communicate health policy and management issues using appropriate channels and technologies</td>
<td>HPM 600 (P) Intro to Health Policy and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P=Primary, R=Reinforcing
CEPH Degree-Specific Competencies
Degree: BSPH
Department: Biostatistics

Courses listed are required unless otherwise indicated.

Table 2.6.1: Courses and activities through which degree-specific competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. perform a descriptive and/or inferential analysis of an uncomplicated dataset using software;</td>
<td>BIOS 500H (P) Introduction to Applied Biostatistics</td>
<td>BIOS 545 (R) Linear Models</td>
<td>BIOS 668 (R) Survey Sampling</td>
<td>BIOS 511 (R) Statistical Programming (SAS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. interpret the results of the analysis for a lay audience;</td>
<td>BIOS 500H (P) Introduction to Applied Biostatistics</td>
<td>BIOS 545 (R) Linear Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. demonstrate understanding of elementary statistical theory;</td>
<td>BIOS 550 (P) Elementary Statistical Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. identify an appropriate design for an experiment or observational study in the health sciences;</td>
<td>EPI 600 (P) Introduction to Epidemiology</td>
<td>BIOS 500H (P) Introduction to Applied Biostatistics</td>
<td>BIOS 668 (P) Design of PH Studies</td>
<td>BIOS 664 (R) Survey Sampling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. demonstrate sufficient quantitative background knowledge for the study of biostatistics, including calculus, linear algebra and discrete mathematics;</td>
<td>MATH 231, 232, 233 (R) Calculus</td>
<td>MATH 547 Linear Algebra</td>
<td>MATH 381 Discrete Math</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. demonstrate an understanding of the foundations of public health, including the physical, biological, and social behavioral/factors which affect the health of the community and systems for health services delivery.</td>
<td>EPI 600</td>
<td>HBHE 600</td>
<td>HPM 600</td>
<td>ENVR 600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P=Primary, R=Reinforcing
Table 2.6.1: Courses and activities through which public health core competencies and cross-cutting competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Name and Number</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biostatistics</td>
<td>BIOS 841 (P)</td>
<td>BIOS 842 (P)</td>
<td>BIOS 691 (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Describe the roles biostatistics serves in the discipline of public health</td>
<td>Principles of Statistical Consulting</td>
<td>Practice in Statistical Consulting</td>
<td>Field Observations in Biostatistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Distinguish among the different measurement scales and the implication for selection of statistical methods to be used based on these directions</td>
<td>BIOS 550 (P) Basic Elements of Probability and Statistical Inference I</td>
<td>BIOS 662 (P) Intermediate Statistical Methods</td>
<td>BIOS 663 (R) Intermediate Linear Models</td>
<td>BIOS 664 (R) Analysis of Categorical Data</td>
<td>BIOS 842 (R) Practice in Statistical Consulting</td>
<td>BIOS 842 (P) Consulting Statistical Practice in Observations Consulting</td>
<td></td>
</tr>
<tr>
<td>3. Apply descriptive techniques commonly used to summarize public health data</td>
<td>BIOS 662 (P) Intermediate Statistical Methods</td>
<td>BIOS 511 (R) Introduction to Statistical Computing and Data Management</td>
<td>BIOS 663 (R) Intermediate Linear Models</td>
<td>BIOS 665 (R) Analysis of Categorical Data</td>
<td>BIOS 842 (R) Practice in Statistical Consulting</td>
<td>BIOS 842 (P) Consulting Statistical Practice in Observations Consulting</td>
<td></td>
</tr>
<tr>
<td>4. Describe basic concepts of probability, random variation and commonly used probability distributions</td>
<td>BIOS 550 (P) Basic Elements of Probability and Statistical Inference</td>
<td>BIOS 662 (P) Intermediate Statistical Methods</td>
<td>BIOS 664 (R) Sample Survey Methodology</td>
<td>BIOS 665 (R) Analysis of Categorical Data</td>
<td>BIOS 842 (R) Practice in Statistical Consulting</td>
<td>BIOS 842 (P) Consulting Statistical Practice in Observations Consulting</td>
<td></td>
</tr>
<tr>
<td>6. Describe preferred methodological alternatives according to the type of study design for answering a particular research question</td>
<td>BIOS 662 (P) Intermediate Statistical Methods</td>
<td>BIOS 664 (R) Sample Survey Methodology</td>
<td>BIOS 665 (R) Analysis of Categorical Data</td>
<td>BIOS 663 (R) Intermediate Linear Models</td>
<td>BIOS 665 (R) Analysis of Categorical Data</td>
<td>BIOS 842 (R) Practice in Statistical Consulting</td>
<td>BIOS 842 (P) Consulting Statistical Practice in Observations Consulting</td>
</tr>
<tr>
<td>7. Apply descriptive and inferential methodologies according to the type of study design for answering a particular research question</td>
<td>BIOS 550 (P) Basic Elements of Probability and Statistical Inference</td>
<td>BIOS 550 (P) Basic Elements of Probability and Statistical Inference</td>
<td>BIOS 668 (R) Design of Public Health Studies</td>
<td>BIOS 665 (R) Analysis of Categorical Data</td>
<td>BIOS 664 (R) Sample Survey Methodology</td>
<td>BIOS 842 (R) Practice in Statistical Consulting</td>
<td>BIOS 842 (P) Consulting Statistical Practice in Observations Consulting</td>
</tr>
</tbody>
</table>
Table 2.6.1: Courses and activities through which **public health core competencies** and cross-cutting competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Apply basic informatics techniques with vital statistics and public health records. In the description of public health characteristics and in public health research and evaluation</td>
<td>BIOS 662 (P) Intermediate Statistical Methods</td>
<td>BIOS 670 (R) Demographic Techniques</td>
<td>BIOS 663 (R) Intermediate Linear Models</td>
<td>BIOS 663 (P) Intermediate Linear Models</td>
<td>BIOS 841 (R) Principles of Statistical Consulting</td>
<td>BIOS 842 (R) Practice in Statistical Consulting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Sciences and Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Specify approaches for assessing, preventing and controlling environmental hazards that pose risks to human health and safety</td>
<td>ENVR 600 (P) Environmental Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Describe the direct and indirect human, ecological and safety effects of major environmental and occupational agents</td>
<td>ENVR 600 (P) Environmental Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Specify current environmental risk assessment methods</td>
<td>ENVR 600 (P) Environmental Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Describe genetic, physiologic and psychosocial factors that affect susceptibility to adverse health outcomes following exposure to environmental hazards</td>
<td>ENVR 600 (P) Environmental Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Discuss various risk management and risk communication approaches in relation to issues of environmental justice and equity</td>
<td>ENVR 600 (P) Environmental Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Explain the general mechanisms of toxicity in eliciting a toxic response to various environmental exposures</td>
<td>ENVR 600 (P) Environmental Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Develop a testable model of environmental insult</td>
<td>ENVR 600 (P) Environmental Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Describe federal and state regulatory programs, guidelines and authorities that control environmental health issues</td>
<td>ENVR 600 (P) Environmental Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidemiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Explain the application of epidemiology for informing scientific, ethical, economic and political discussion of health issues</td>
<td>EPID 600 (P) Principles of Epidemiology for Public Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Apply the basic terminology and definitions of epidemiology</td>
<td>EPID 600 (P) Principles of Epidemiology for Public Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competencies</td>
<td>Course Number and Name</td>
<td>Other Learning Experiences</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>3. Identify key sources of data for epidemiologic reports</td>
<td>EPID 600 (P)</td>
<td>Principles of</td>
<td>EPID 600 (P)</td>
<td>Principles of</td>
<td>EPID 600 (P)</td>
<td>BIOS 662 (R)</td>
<td>BIOS 550 (R)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epidemiology for Public</td>
<td></td>
<td>Epidemiology for Public</td>
<td></td>
<td>Intermediate Statistical</td>
<td>Basic Elements of Probability and Statistical Inference I</td>
<td></td>
</tr>
<tr>
<td>4. Calculate basic epidemiology measures</td>
<td>EPID 600 (P)</td>
<td>Principles of</td>
<td>EPID 600 (P)</td>
<td>Principles of</td>
<td>EPID 600 (P)</td>
<td>BIOS 662 (R)</td>
<td>BIOS 550 (R)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epidemiology for Public</td>
<td></td>
<td>Epidemiology for Public</td>
<td></td>
<td>Intermediate Statistical</td>
<td>Basic Elements of Probability and Statistical Inference I</td>
<td></td>
</tr>
<tr>
<td>5. Evaluate the strengths and limitations of epidemiologic reports</td>
<td>EPID 600 (P)</td>
<td>Principles of</td>
<td>BIOS 662 (R)</td>
<td>BIOS 550 (R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epidemiology for Public</td>
<td></td>
<td>Basic Elements of Probability and Statistical Inference I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Draw appropriate inferences from epidemiologic data</td>
<td>EPID 600 (P)</td>
<td>Principles of</td>
<td>BIOS 662 (R)</td>
<td></td>
<td>BIOS 550 (R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epidemiology for Public</td>
<td></td>
<td>Basic Elements of Probability and Statistical Inference I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Communicate epidemiologic information to lay and professional audiences</td>
<td>EPID 600 (P)</td>
<td>Principles of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Comprehend basic ethical and legal principles pertaining to the collection,</td>
<td>EPID 600 (P)</td>
<td>Principles of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maintenance, use and dissemination of epidemiologic data</td>
<td></td>
<td>Epidemiology for Public</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Identify the principles and limitations of public health screening programs</td>
<td>EPID 600 (P)</td>
<td>Principles of</td>
<td>BIOS 662 (R)</td>
<td></td>
<td>BIOS 550 (R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epidemiology for Public</td>
<td></td>
<td>Basic Elements of Probability and Statistical Inference I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Health Behavior and Health Education

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the role of social and community factors in both the onset and solution of public health problems.</td>
<td>HBEH 600 (P)</td>
<td>Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Identify the causes of social and behavioral factors that affect health of individuals and populations.</td>
<td>HBEH 600 (P)</td>
<td>Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Identify basic theories, concepts and models from a range of social and behavioral disciplines that are used in public health research and practice.</td>
<td>HBEH 600 (P)</td>
<td>Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Apply ethical principles to public health program planning, implementation and evaluation.</td>
<td>HBEH 600 (P)</td>
<td>Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Specify multiple targets and levels of intervention for social and behavioral science programs and/or policies.</td>
<td>HBEH 600 (P)</td>
<td>Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6.1: Courses and activities through which public health core competencies and cross-cutting competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Identify individual, organizational and community concerns, assets, resources and deficits for social and behavioral science interventions.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Use evidence-based approaches in the development and evaluation of social and behavioral science interventions.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Describe the merits of social and behavioral science interventions and policies.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Describe steps and procedures for the planning, implementation and evaluation of public health programs, policies and interventions.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Identify critical stakeholders for the planning, implementation and evaluation of public health programs, policies and interventions.</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Health Policy and Management

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the main components and issues of the organization, financing, and delivery of health services in the U.S.</td>
<td>HPM 600 (P) Introduction to the U.S. Health System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Discuss the policy process for improving the health status of populations.</td>
<td>HPM 600 (P) Introduction to the U.S. Health System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Describe the legal and ethical bases for public health and health services.</td>
<td>HPM 600 (P) Introduction to the U.S. Health System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Apply quality and performance improvement concepts to address organizational performance issues.</td>
<td>HPM 600 (P) Introduction to the U.S. Health System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Use “systems thinking” for resolving organizational problems.</td>
<td>HPM 600 (P) Introduction to the U.S. Health System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Use the principles of program planning, development, budgeting, management and evaluation to organizational and community initiatives.</td>
<td>HPM 600 (P) Introduction to the U.S. Health System</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in Public Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Communicate health policy and management issues using appropriate channels and technologies.</td>
<td>HPM 600 (P) Introduction to the U.S. Health System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Communication and Informatics
Table 2.6.1: Courses and activities through which public health core competencies and cross-cutting competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Demonstrate effective written and oral health communication skills appropriately adapted to professional and lay audiences with varying knowledge and skills in interpreting health information.</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 864 (P) Sample Survey Methodology</td>
<td>BIOS 992 (R) Master’s Paper</td>
<td>BIOS 662 (R) Intermediate Statistical Methods</td>
<td>ENVR 600 (R) Environmental Health</td>
<td>EPID 600 (P) Principles of Epidemiology</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in Public Health HPM 600 (R) Intro to Health Policy and Man.</td>
</tr>
<tr>
<td>2. Use information technology tools effectively in core public health functions such as retrieval of institutional and online public health data and dissemination of public health information.</td>
<td>BIOS 511 (P) Introduction to Statistical Computing and Data Management</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (P) Master’s Paper</td>
<td>BIOS 662 (R) Intermediate Statistical Methods</td>
<td>EPID 600 (P) Principles of Epidemiology</td>
<td>HBEH 600 (R) Social and Behavioral Sciences in Public Health</td>
</tr>
</tbody>
</table>

Diversity & Cultural Competency

1. Demonstrate awareness of and sensitivity to the varied perspectives, norms and values of others based on individual and ethnic/cultural differences (e.g., age, disability, gender, race, religion, sexual orientation, region and social class).	BIOS 841 (P) Principles of Statistical Consulting	BIOS 842 (P) Practice in Statistical Consulting	HBEH 600 (P) Social and Behavioral Sciences in PH		
2. Show effective and productive skills in working with diverse individuals including co-workers, partners, stakeholders, and/or clients.	BIOS 841 (P) Principles of Statistical Consulting	BIOS 842 (P) Practice in Statistical Consulting	EPID 600 (R) Principles of Epidemiology	HBEH 600 (P) Social and Behavioral Sciences in PH	
3. Develop, implement, and/or contribute to effective public health programming and conduct research that integrates: (1) knowledge levels of health access among individuals and within communities, and (2) culturally-appropriate methods for conducting practice or research.	BIOS 841 (P) Principles of Statistical Consulting	BIOS 842 (P) Practice in Statistical Consulting	BIOS 992 (P) Master’s Paper	BIOS 691 (R) Field Observations in Biostatistics	

Leadership

| 1. Demonstrate basic team building, negotiation, and conflict management skills. | BIOS 841 (P) Principles of Statistical Consulting | BIOS 842 (P) Practice in Statistical Consulting | BIOS 664 (R) Sample Survey Methodology | EPID 600 (R) Principles of Epidemiology | EPID 600 (R) Principles of Epidemiology for Public Health | |

Published: 9/22/2017 2:37 PM: EDITION 2017-18 Page 85
Table 2.6.1: Courses and activities through which public health core competencies and cross-cutting competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Create a climate of trust, transparency, mutual cooperation, continuous learning, and openness for suggestion and input with co-workers, partners, other stakeholders, and/or clients.</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (P) Master’s Paper</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>EPID 600 (R) Principles of Epidemiology</td>
<td>Advising meetings</td>
</tr>
<tr>
<td>3. Exercise productive organizational, time-management and administrative skills.</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (P) Master’s Paper</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>EPID 600 (R) Principles of Epidemiology</td>
<td>Advising meetings</td>
</tr>
<tr>
<td>4. Develop knowledge of one’s individual strengths and challenges, as well as mechanisms for continued personal and professional development.</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (P) Master’s Paper</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>EPID 600 (R) Principles of Epidemiology</td>
<td>Advising meetings</td>
</tr>
<tr>
<td>Professionalism & Ethics</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (P) Master’s Paper</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>EPID 600 (R) Principles of Epidemiology</td>
<td>Advising meetings</td>
</tr>
<tr>
<td>1. Review, integrate, and apply ethical and/or legal principles in both personal and professional interactions, as well as public health practice and/or research.</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (P) Master’s Paper</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>EPID 600 (R) Principles of Epidemiology</td>
<td>Advising meetings</td>
</tr>
<tr>
<td>3. Appreciate the need for lifelong learning in the field of public health.</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (P) Master’s Paper</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>EPID 600 (R) Principles of Epidemiology</td>
<td>Advising meetings</td>
</tr>
<tr>
<td>4. Consider the effect of public health decisions on social justice and equity.</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (P) Master’s Paper</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>EPID 600 (R) Principles of Epidemiology</td>
<td>Advising meetings</td>
</tr>
<tr>
<td>Program Planning</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (P) Master’s Paper</td>
<td>BIOS 691 (R) Field Observations in Biostatistics</td>
<td>EPID 600 (R) Principles of Epidemiology</td>
<td>Advising meetings</td>
</tr>
<tr>
<td>1. Discuss social, behavioral, environmental, and biological factors that contribute to specific individual and community health outcomes.</td>
<td>ENVR 600 (P) Environmental Health</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>HBEH 600 (P) Introduction to the U.S. Health System</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (R) Master’s Paper</td>
</tr>
<tr>
<td>2. Identify needed resources for public health programs or research.</td>
<td>ENVR 600 (P) Environmental Health</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>HPM 600 (P) Introduction to Health Policy and Management</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (R) Master’s Paper</td>
</tr>
<tr>
<td>Systems Thinking</td>
<td>ENVR 600 (P) Environmental Health</td>
<td>HPM 600 (P) Introduction to Health Policy and Management</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (R) Master’s Paper</td>
</tr>
<tr>
<td>1. Identify characteristics of a system.</td>
<td>ENVR 600 (P) Environmental Health</td>
<td>HPM 600 (P) Introduction to Health Policy and Management</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (R) Master’s Paper</td>
</tr>
<tr>
<td>2. Respond to identified public health needs within their appropriate contextual setting.</td>
<td>ENVR 600 (P) Environmental Health</td>
<td>HPM 600 (P) Introduction to Health Policy and Management</td>
<td>HBEH 600 (P) Social and Behavioral Sciences in PH</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 992 (R) Master’s Paper</td>
</tr>
</tbody>
</table>

P=Primary, R=Reinforcing
Table 2.6.1: Courses and activities through which the degree-specific competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate an understanding of the elements of probability and statistical inference and ability to apply them to a variety of estimation and hypothesis testing problems in the public health field.</td>
<td>BIOS 550 (P) Basic Elements of Probability and Statistical Inference</td>
<td>BIOS 662 (P) Intermediate Statistical Methods</td>
<td>BIOS 663 (R) Intermediate Linear Models</td>
<td>BIOS 664 (R) Sample Survey Methodology</td>
<td>BIOS 665 (R) Analysis of Categorical Data</td>
<td></td>
</tr>
<tr>
<td>Use information technology for research data management (applying defensible standard of reproducibility, documentation, archiving, protection of confidentiality and audit trail) and for performing statistical analysis of public health data.</td>
<td>BIOS 511(P) Introduction to Statistical Computing and Data Management</td>
<td>BIOS 669 (P) Working with Data in a Public Health Research Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learn to develop an efficient design for an observational or experimental study in the health sciences.</td>
<td>BIOS 668 (P) Design of Public Health Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain successful experience in statistical consulting, including interaction with research workers in the health sciences, understanding and formalizing statistical aspects of substantive problems, and communicating analysis results to persons without specialized biostatistical training.</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 843 (P) Seminar in Biostatistics</td>
<td>BIOS 691 (P) Field Observations in Biostatistics</td>
<td>BIOS 842 (R) Practice in Statistical Consulting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write an adequate report related to the statistical aspects of a problem in health sciences.</td>
<td>BIOS 992 (P) Master’s Paper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P=Primary, R=Reinforcing
CEPH Degree-Specific Competencies
Degree: MS
Department: Biostatistics

Courses listed are required unless otherwise indicated.

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate an understanding of probability and statistical inference,</td>
<td>BIOS 660 (P) Probability and Statistical Inference I</td>
<td>BIOS 661 (P) Probability and Statistical Inference II</td>
<td>BIOS 663 (R) Intermediate Linear Models</td>
<td>BIOS 664 (R) Sample Survey Methodology</td>
<td>BIOS 667 (R) Applied Longitudinal Data Analysis</td>
<td>BIOS 680 (R) Introductory Survivorship Analysis</td>
<td>Demstrate basic knowledge of one or more substantive areas of statistical application in the health sciences.</td>
</tr>
<tr>
<td>including the fundamental laws of classical probability, discrete and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>continuous random variables, expectation theory, bivariate and multivariate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>distribution theory, maximum likelihood methods, hypothesis testing, power,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and likelihood ratio, score and Wald tests.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrate ability to apply the elementary methods of statistical analysis,</td>
<td>BIOS 662 (P) Intermediate Statistical Methods</td>
<td>BIOS 663 (P) Intermediate Linear Models</td>
<td>BIOS 667 (R) Applied Longitudinal Data Analysis</td>
<td>BIOS 680 (R) Introductory Survivorship Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>including those based on classical linear models and on nonparametric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alternatives, involving categorical, discrete, normal, or ranked data, to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>problems of description, goodness of fit, univariate location and scale,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bivariate independence and correlation, regression analysis, and the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>comparison of independent and matched samples possibly adjusting for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>covariables.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use computers for research data management (applying defensible standard</td>
<td>BIOS 511 (P) Introduction to Statistical</td>
<td>BIOS 662 (R) Intermediate Statistical Methods</td>
<td>BIOS 663 (R) Intermediate Linear Models</td>
<td>BIOS 667 (R) Applied Longitudinal Data Analysis</td>
<td>BIOS 680 (R) Introductory Survivorship Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of documentation, archiving, protection of confidentiality and audit training</td>
<td>Computing and Data Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and for the analysis of data with standard statistical program packages.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learn to develop an efficient design of an observational or experimental</td>
<td>BIOS 841 (P) Principles of Statistical</td>
<td>EPID 600 (R) Principles of Epid. Public Health</td>
<td>BIOS 993 (R) Master’s Paper</td>
<td>BIOS 841 (R) Principles of Statistical</td>
<td>BIOS 842 (R) Practice in Statistical Consulting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>study in the health sciences.</td>
<td>Consulting</td>
<td></td>
<td></td>
<td>Consulting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrate basic knowledge of one or more substantive areas of statistical</td>
<td>EPID 600 (P) Probability and Statistical</td>
<td>SPHG 600 (P) Introduction to Public Health</td>
<td>BIOS 993 (R) Master’s Paper</td>
<td>BIOS 841 (R) Principles of Statistical</td>
<td>BIOS 842 (R) Practice in Statistical Consulting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>application in the health sciences.</td>
<td>Inference</td>
<td></td>
<td></td>
<td>Consulting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.6.1: Courses and activities through which the degree-specific competencies are met
Table 2.6.1: Courses and activities through which the degree-specific competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain successful experience in statistical consulting, including interaction with research workers in the health sciences, abstracting statistical aspects of substantive problems, and communicating the results to persons without specialized biostatistical training.</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (R) Practice in Statistical Consulting</td>
<td>BIOS 691 (P) Field Observations in Biostatistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write an adequate report related to the statistical aspects of a problem in health sciences, or a contribution to statistical methodology.</td>
<td>BIOS 992 (P) Master's Paper</td>
<td>BIOS 841 (R) Principles of Statistical Consulting</td>
<td>BIOS 842 (R) Practice in Statistical Consulting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P=Primary, R=Reinforcing
<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate the ability to use state-of-the-art design and analysis methods to solve a wide variety of applied statistical problems in the health sciences</td>
<td>BIOS 662 (P) Intermediate Statistical Methods</td>
<td>BIOS 663 (P) Intermediate Linear Models</td>
<td>BIOS 664 (P) Sample Survey Methodology</td>
<td>BIOS 665 (P) Analysis of Categorical Data</td>
<td>BIOS 666 (P) Design of Public Health Studies</td>
<td></td>
</tr>
<tr>
<td>Learn advanced biostatistical techniques, including the ability to design cost-effective surveys and experiments (including clinical trials) for collecting data on topics relevant to health, taking account of sampling error, measurement error, nonresponse, and other sources of bias and variability;</td>
<td>BIOS 762 (P) Theory of Applications of Linear and Generalized Linear Models</td>
<td>BIOS 664 (P) Sample Survey Methodology</td>
<td>BIOS 764 (R) (elective) Advanced Survey Sampling Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use advanced theory for estimation and statistical inference based on health data, including linear regression and mixed models; models for longitudinal discrete and continuous data, and survival models;</td>
<td>BIOS 672 (P) Probability and Statistical Inference I</td>
<td>BIOS 673 (P) Probability and Statistical Inference II</td>
<td>BIOS 667 (P) Applied Longitudinal Analysis</td>
<td>BIOS 767 (P) (elective) Introductory Survivorship Analysis</td>
<td>BIOS 680 (P) Introductory Survivorship Analysis</td>
<td></td>
</tr>
<tr>
<td>Discern when standard methods are not appropriate, when nonparametric methods based on randomization and ranks may be substituted, or when new methods must be developed</td>
<td>BIOS 662 (P) Intermediate Statistical Methods</td>
<td>BIOS 756 (R) (elective) Introduction to non-parametric Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use computers for research data management (applying a defensible standard of documentation, archiving, protection of confidentiality, and audit trail) and for the analysis of data with standard statistical program packages</td>
<td>BIOS 511(P) Introduction to Statistical Computing and Data Management</td>
<td>BIOS 669 (P) Working with Data in a Public Health Research Setting</td>
<td>BIOS 735 (R) (elective) Statistical Computing – Basic Principles and Applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carry out independent methodological research, including the writing of a scholarly dissertation and publishing papers based on this research in respected statistical journals</td>
<td>BIOS 894 (P) Doctoral Dissertation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6.1: Courses and activities through which the degree-specific competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain successful practical experience in statistical consulting, including interaction with research workers in the health sciences, abstracting statistical aspects of substantive problems, and communicating the results to persons without specialized biostatistical training; if not outside academia, then this consulting experience can be obtained by serving in the Biometric Consulting Laboratory (BCL) or as a member of a university research project team</td>
<td>BIOS 841 (P) Principles of Statistical Consulting</td>
<td>BIOS 842 (P) Practice in Statistical Consulting</td>
<td>BIOS 843 (P) Seminar in Biostatistics</td>
<td>BIOS 844 (R) Leadership in Biostatistics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P=Primary, R=Reinforcing
CEPH Degree-Specific Competencies

Degree: PhD
Department: Biostatistics

Courses listed are required unless otherwise indicated.

Table 2.6.1: Courses and activities through which the degree-specific competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate mastery of: (a) the theory of probability and statistical inference, by successfully passing the PhD Basic Written Examination in Biostatistics (Theory Exam), and (b) the application of said theory to solve a variety of applied statistical problems in the health sciences</td>
<td>BIOS 672 (P) Probability and Statistical Inference I</td>
<td>BIOS 673 (P) Probability and Statistical Inference II</td>
<td>BIOS 760 (P) Advanced Probability and Statistical Inference I</td>
<td>BIOS 761 (P) Advanced Probability and Statistical Inference II</td>
<td>BIOS 762 (P) Theory and Applications of Linear and Generalized Linear Models</td>
<td>BIOS 767 (P) Longitudinal Data Analysis</td>
<td>BIOS 780 (P) Theory and Methods for Survival Analysis</td>
<td></td>
</tr>
<tr>
<td>Learn advanced biostatistical techniques, including the ability to: Design cost-effective surveys and experiments (including clinical trials) for collecting data on topics relevant to health, taking account of sampling error, measurement error, nonresponse, and other sources of bias and variability;</td>
<td>EPID 662 (P) Intermediate Statistical Methods</td>
<td>BIOS 663 (P) Intermediate Linear Models</td>
<td>BIOS 665 (P) Analysis of Categorical Data</td>
<td>BIOS 667 (P) Applied Longitudinal Data Analysis</td>
<td>BIOS 668 (R) Design of Public Health Studies</td>
<td>BIOS 680 (P) Introductory Survivorship Analysis</td>
<td>BIOS 752 (R) (elective) Design and Analysis of Clinical Trials</td>
<td>BIOS 764 (R) (elective) Advanced Survey Sampling Methods</td>
</tr>
<tr>
<td>Use advanced parametric and semiparametric models for the analysis of public health data, including linear regression, mixed models, methods for categorical data, generalized linear (mixed) models, generalized estimating equations, survival analysis, and Bayesian methods;</td>
<td>BIOS 767 (P) Longitudinal Data Analysis</td>
<td>BIOS 762 (P) Theory and Applications of Linear and Generalized Linear Models</td>
<td>BIOS 765 (R) (elective) Models and Methodology in Categorical Data</td>
<td>BIOS 772 (R) (elective) Statistical Analysis of MRI Images</td>
<td>BIOS 773 (R) (elective) Statistical Analysis with Missing Data</td>
<td>BIOS 775 (R) (elective) Statistical Methods in Diagnostic Medicine</td>
<td>BIOS 776 (R) (elective) Bayesian Statistics</td>
<td>BIOS 779 (R) (elective) Advanced Survey Sampling Methods</td>
</tr>
<tr>
<td>Discern when standard methods are not appropriate, when nonparametric methods based on randomization and ranks may be substituted, or when new methods must be developed;</td>
<td>BIOS 756 (P) (elective) Introduction to Nonparametric Statistics</td>
<td>BIOS 791 (P) (elective) Empirical Processes and Semiparametric Inference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Students in the PhD program in BIOS are required to complete 12 credits of 700-level BIOS electives. Students may choose from any of the 700-level BIOS courses that are not considered to be core courses (i.e. not BIOS 760, 761, 762, 767 or 780).
<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate survival curves from time-to-event data which may involve censoring</td>
<td>BIOS 680 (P)</td>
<td>BIOS 780 (P)</td>
<td>BIOS 699 (P)</td>
<td>BIOS 735 (P)</td>
<td>BIOS 841 (P)</td>
<td>BIOS 844 (P)</td>
<td>BIOS students required to submit one of three doctoral dissertation papers for publication before defense</td>
</tr>
<tr>
<td>and test for differences among treatments and for the effects of covariates; and</td>
<td>Introductory Survivorship Analysis</td>
<td>Theory and Methods for Survival Analysis</td>
<td>Working with Data in a Public Health Research Setting</td>
<td>(elective) Statistical Computing – Basic Principles and Applications</td>
<td>Principles of Statistical Consulting</td>
<td>Seminar in Biostatistics</td>
<td></td>
</tr>
<tr>
<td>Model population growth, spread of disease, and other biological phenomena using Markov chains, Poisson processes and extensions, epidemic models, branching processes, and other stochastic models of empirical processes</td>
<td>BIOS 791 (P) (elective)</td>
<td>BIOS 771 (P) (elective)</td>
<td>BIOS 842 (R)</td>
<td>BIOS 843 (R)</td>
<td>BIOS 843 (R)</td>
<td>BIOS 844 (R)</td>
<td></td>
</tr>
<tr>
<td>Use computers for research data management (applying a defensible standard of documentation, archiving, protection of confidentiality, and audit trail) and for the analysis of data with standard statistical program packages</td>
<td>BIOS 511 (P)</td>
<td>BIOS 669 (P)</td>
<td>BIOS 735 (P)</td>
<td>BIOS 841 (P)</td>
<td>BIOS 842 (R)</td>
<td>BIOS 843 (R)</td>
<td></td>
</tr>
<tr>
<td>Carry out independent methodological research, including the writing of a scholarly dissertation and publishing papers based on the dissertation in respected statistical journals</td>
<td>BIOS 994 (P)</td>
<td>BIOS 699 (P)</td>
<td>BIOS 735 (P)</td>
<td>BIOS 841 (P)</td>
<td>BIOS 842 (R)</td>
<td>BIOS 843 (R)</td>
<td></td>
</tr>
<tr>
<td>Gain successful practical experience in statistical consulting, including interaction with research workers in the health sciences, abstracting statistical aspects of substantive problems, and communicating the results to persons without specialized biostatistical training; if not outside academia, then this consulting experience can be obtained by serving in the Biometric Consulting Laboratory (BCL) or as a member of a university research project team</td>
<td>BIOS 841 (P)</td>
<td>BIOS 842 (R)</td>
<td>BIOS 843 (R)</td>
<td>BIOS 844 (R)</td>
<td>BIOS 841 (P)</td>
<td>BIOS 842 (R)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6.1: Courses and activities through which the degree-specific competencies are met

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Course Number and Name</th>
<th>Other Learning Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teach basic statistical theory and applications effectively, not only to biostatistics majors, but also to other health science practitioners</td>
<td>BIOS 850 (P) Training in Statistical Teaching in the Health Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOS students required to serve as TA for a biostatistics service course (i.e., 545, 550, 511, 600, 662, 663, 665)</td>
</tr>
</tbody>
</table>

P=Primary, R=Reinforcing
LISTS OF IMPORTANT WEB SITES

- Calendars Fall 2017 and Spring 2018 and UNC Academic Calendars
 http://registrar.unc.edu/academic-calendar/

- Graduate School Handbook
 http://handbook.unc.edu/

- Graduate School Forms
 (To obtain a copy of these forms please visit
 http://gradschool.unc.edu/academics/resources/forms.html - OR - stop by
 the office of the registrar)

- UNC Graduate School and Student Life
 http://www.gradschool.unc.edu
 http://gradschool.unc.edu/studentlife/

- Residency
 http://gradschool.unc.edu/studentlife/resources/residency/

- Cost to attend and funding
 http://cashier.unc.edu/
 http://gradschool.unc.edu/funding/

- University Registrar (links to graduation info, courses, residency, etc.)
 http://registrar.unc.edu/

- Departmental Committees and Members for 2017 - 2018

- Graduation Information and Deadlines
 http://gradschool.unc.edu/academics/resources/graddeadlines.html

- Office of Student Conduct-Honor System
 https://studentconduct.unc.edu/

- Student Review Forms
 MPH, MS, DRPH, PHD