NUTR 813: NUTRITIONAL EPIDEMIOLOGY, SPRING 2014

COURSE OBJECTIVES: The course introduces basic concepts and methods in key areas of Nutrition Epidemiology, and discusses practical considerations related to designing, analyzing, and evaluating population-based nutrition studies. Topics include: (i) alternative methods for measuring dietary intakes (foods, nutrients, non-nutrients, diet patterns, food contaminants); (ii) methods for measuring nutritional status including obesity; (iii) the use of biomarkers to measure nutritional exposures; and (iii) techniques for measuring physical activity. Students will debate the strengths and weaknesses of using different measures in the context of varied study designs and research topics. Students will also gain experience in the critical evaluation of nutrition epidemiology literature, which will be enhanced by a hands-on introduction to the analysis of nutrition epidemiology data.

Upon completion of this course, students are expected to be able to:
1. Describe strengths and weaknesses of common methods of dietary assessment in epidemiological research, and critically evaluate when different methods may be most appropriate.
2. Describe strengths and weaknesses of common methods used to assess nutritional status and physical activity in epidemiological research.
3. Correctly interpret and critically evaluate nutritional epidemiology literature taking into account issues such as the study designs used, measurement error and bias in key variables, and approaches used to analyze data.

Please review the syllabus before class to become familiar with objectives, assignments.

Tuesdays and Thursdays, 9:30-10:45
235 Rosenau Hall

Recommended Textbooks (HSL library reserve)
- Gibson R. Principles of Nutritional Assessment.
- Willett W. Nutritional Epidemiology
- Hu FB. Obesity Epidemiology

Instructors
Michelle Mendez, McGavran-Greenberg 2205A
Co-instructor: Archana Lamichhane, McGavran-Greenberg 2XXX

Teaching assistants
Lindsey Smith
Zhihong Wang
Data analysis co-instructor: Amy Roberts

Grades will be based on (due dates shown in parentheses):
• Active participation in class activities
• Homework assignments (diet data 1/29; food composition 2/14; group in-class physical activity exercise 2/21)
• Mid-term exam (3/21)
• Group project: Introduction to data analysis in nutritional epidemiology
• Final paper (due 5/1)
DETAILED SYLLABUS WITH READINGS

EPIDEMIOLOGY CONCEPTS AND METHODS REVIEW SESSION: STRONGLY RECOMMENDED

Tentatively: Thursday Jan 23 [final time and location TBA]

Learning objectives: Review basic study designs, interpretation of different measures of association, potential sources of bias (e.g. selection, information bias such as recall bias, confounding), and criteria for causal relationships.

The main objective is to prepare students with limited exposure to epidemiology for the basic epidemiology methods and concepts. **There will be a short quiz based on the material covered.**

1: Thursday Jan 9

[1a] **Introduction to nutritional epidemiology** Overview of the scope of nutrition epidemiology research and syllabus review exercise [MM].

[1b] **Case study exercise:** Adapting a dietary intake assessment tool to meet study aims [MM]

Learning objectives: Course overview. Introduce objectives and challenges in nutritional epidemiology research, noting the broad scope of the field, and describing challenges involved in measuring the main variables of interest (diet, activity, nutritional status).

Required readings: Please review course syllabus before class

PART 1 (MEASURES): ASSESSMENT OF FOOD INTAKES

2: Tuesday Jan 14

[2a] **Dietary assessment overview:** Review the main methods for dietary assessment, focusing on strengths and limitations. Brief review of potential goals of dietary assessment (e.g. estimate intakes of various dietary factors to assess compliance with guidelines, assess nutrient status, evaluate a policy or intervention program, or evaluate relationships with health outcome). [30 min MM or AL]

[2b] **Small group brainstorming** [35 min]: *The participant perspective on dietary assessment*—how might factors such as time required, cognitive burden, and social desirability affect intake reporting? Small groups will develop a list of important pros and cons of alternative methods to collect usual intake data of major food groups in light of the challenges respondents face. Keep in mind personal experiences from homework assignment of completing a diet recall, diet record, FFQ, and a brief fruit and vegetable screener. **Readings:** Be prepared to integrate/discuss Thompson et al *(especially Table 1)* and Scagliusi et al *(especially paragraph 3 of results and Table 3)* in developing your pros and cons.

Learning objectives: Further raise awareness of how issues such as the structure of alternative dietary assessment methods and participant characteristics may influence reported intakes and data quality/validity.

Required activities:
- Partial completion of a 24-h recall, a diet record, an FFQ, and a fruit and vegetable screener. Instruments can be found at:
 - (i) ASA24 recall: http://asa24demo.westat.com/ [input at least 2 meals];
 - (ii) Diet record/diary: In excel or word using format as in: http://www.nhlbi.nih.gov/health/public/heart/obesity/lose_wt/diary.htm [input at least 1 large meal, noting ingredients in as much detail as possible (oils, condiments, etc.)];
 - (iii) Food frequency questionnaire [the NCI’s Diet History Questionnaire]: https://riskfactor.cancer.gov/cgi-bin/dhq2.pl?module=2&method=1 [complete at least 50%];

Required readings:

Suggested readings/resources for for future reference:
- Hu textbook, pp 84-88
- Willett textbook, pp. 4 to 148
Begin homework assignment 1 (due Jan 21)—dietary assessment comparisons: Students will review and compare reported intakes of energy and selected nutrients (dietary fat, fiber) obtained using 24-h recalls, diet records and an FFQ.

3: Thursday Jan 16

[3a] Strengths, weaknesses and validity of dietary assessment methods: Typical sources of error and bias in estimates of dietary intake including variation; approaches for validating intakes [30 min MM or AL].
[3b] Small group case-study: dietary assessment consulting [15 min small groups/25 min class feedback to groups]
The researcher perspective on dietary assessment. You are asked to advise a research group on appropriate dietary assessment methods for one of the following studies: (a) a randomized weight loss intervention in overweight and obese adults involving reduced sedentarism and dietary behavior changes (e.g. increased fruit and vegetable intakes); (b) a case-control study on dietary risk factors (e.g. fruit/vegetable or cereal fiber; probiotics) for irritable bowel syndrome, believed to develop over many years, and (c) a prospective study which will explore diet quality (e.g. fruit and veg intake) and incident obesity in a small multi-ethnic cohort of 9-10y old children, and (d) a prospective cohort study on maternal diet during pregnancy and infant neurodevelopment at one year of age, with a particular interest in fish consumption. As limited resources are available for collecting these data, the researchers have asked about the possibility of using low-cost approaches such as web-based methods, or brief tools. What approach will you suggest they use to collect dietary data? Justify your recommendation. Readings: Keep in mind to mention in your justification any relevant findings from Bingham et al (esp Table 4 and Figure 1), Mendez et al (esp Figure 2 and Table 3), and Martinéz-González et al (e.g. Table 3).

Learning objectives: Provide insights on how the choice of dietary assessment method depends on study goals, as instruments may influence not only reported intakes, but also associations between intakes and health outcomes.
Required readings:

Suggested readings/resources for future reference:

4: Tuesday Jan 21

[4a] Case study: conducting a critical review of diet-health outcome associations [30 min MM].
[4b] Small group case study discussion [20 min small groups/20 min class discussion]: Four small groups will each design a new study to increase knowledge on the topic presented, taking into account limitations of existing literature presented in class. Proposed projects will be presented to the class, highlighting how the design they propose addresses weaknesses of earlier studies to contribute new knowledge. Class discussion will focus on common design ideas across groups, as well as strengths and weaknesses of any differences in proposed designs.

Learning objectives: Introduction to evaluating the literature: the potential impact of factors including (among others) definitions of intake variables, ranges of intake or exposure, and data analysis approaches on individual study results, and implications for evaluating a body of literature. Define different types of reviews: non-systematic eg state-of-the-art, systematic review and meta-analyses.
Required readings: None
Suggested readings: None

Turn in homework assignment 1: Comparison of data from alternative dietary assessment methods
5: Thursday Jan 23

[5a] **Dietary patterns**: Rationale for studying dietary patterns. Methods for developing and analyzing patterns that account for health effects of multiple dietary factors in dietary patterns [30 minute lecture AL or MM]

[5b] **Informal debate**: The class will break into two groups who will debate the pros and cons of assessing dietary patterns using either (i) an *a priori* method (eg Mediterranean diet scores, Healthy Eating Index) or (ii) data-driven methods (e.g. factor or cluster analysis). [10 min brainstorming, 20 min debate]. - **Readings**: In your discussions, build on information from Reedy et al Table 1 (overview of interpreting different types of patterns); Fung et al methods section (especially methods section on construction of alternative *a priori* indices), and Varraso et al (results table illustrating distribution of food intakes across factor scores).

Learning objectives: To discuss how synergies in health effects of multiple foods/nutrients can be potentially relevant for health outcomes. To raise awareness of the difference questions being addressed by research applying a priori vs. data-driven methods for developing dietary patterns. To discuss the relevance of exploring diet-disease relationships at multiple levels, including individual nutrients and foods as well as overall patterns.

Required readings:

Suggested readings/resources for future reference:
- Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology 2002
- Mendez MA, Popkin BM, Jakszyn P et al. Adherence to a Mediterranean diet is associated with reduced 3-year incidence of obesity. J Nutr. 2006 Nov;136(11):2934-8. See especially: Methods section paragraph on constructing diet score and Figure 1.

PART 2 (MEASURES): ASSESSMENT OF NUTRITIONAL STATUS

6: Tuesday Jan 28

Short epi methods quiz in class today

[6] **Assessment of nutritional status, part 1** [60 min MM or AL; 15 min discussion] Use and interpretation of anthropometric and more direct measures of body composition/adiposity; sources of error and bias; relationships between anthropometry and measures of adiposity; use of multiple measures of obesity. **Readings**: Be prepared to discuss table 4 and Figure 2 of Janssen et al.

Learning objectives: Highlight sources of error and bias in anthropometric as well as direct measures of obesity (e.g. inter-observer variability, bioelectric impedance prediction equations), differences in interpretation, and strengths as well as limitations of various measures.

Required readings (for discussion in class):
- Janssen I, Mark AE. Separate and combined influence of body mass index and waist circumference on arthritis and knee osteoarthritis. Int J Obes (Lond). 2006 Aug;30(8):1223-8. Be prepared to discuss Table 4 and Figure 2.

Suggested readings/resources for future reference:
7: Thursday Jan 30

[7a] **Assessment of nutritional status, part 2**: Obesity in global and diverse populations [30 min MM or AL]

[7b] **Small group debates** on two topics: 1) Should different BMI cutpoints be used for different ethnic groups when comparing adult overweight and obesity across the globe? And 2) Should a single waist circumference criterion be used for all US children and adolescents or should ethnic group specific criterion be utilized? **Readings**: Be prepared to cite the assigned readings to support the side of the debate to which you are assigned.

Learning objectives: Highlight variable associations between direct measures of adiposity and anthropometry across populations.

Required readings *(for discussion in class)*:

Suggested readings/resources for future reference:

PART 3 (MEASURES): ASSESSING INTAKES OF NUTRIENTS, NON-NUTRIENTS

8: Tuesday Feb 4

[8a] **Development and use of food composition tables (nutrients and non-nutrients)**

- Part 1: Overview of major food composition resources, challenges in linking intake data with FCTs, and the range of dietary factors of interest to estimate using FCTs (n-3s, PAHs, glycemic index, antioxidant capacity) [30 min MM].
- Part 2: Methods being used to improve the precision of FCT data by the UNC Food Research Program (FRP) [40 min]. In-class exercise by FRP.

Learning objectives: Introduce the challenge of compiling sufficiently valid food composition data. Review major sources of food composition data and potential discuss sources of error, including variability in nutrient content and missing values.

Required readings:
- Gibson R. Principles of Nutritional Assessment, Chapter 4, pp 65 through 69.

Suggested readings/resources for future reference:
- Directory of international food composition data: http://www.fao.org/infods/directory_en.stm

Begin homework assignment 2 (due Feb 14): Short exercise on adapting food composition data for use in a global context.

9: Thursday Feb 6

[9a] **Biomarkers** in nutritional epidemiology: Challenges and considerations in the use of biomarkers as proxies or gold standards of dietary intakes, including variability related to within-person/daily changes, seasonal effects, genetic and other influences on metabolism, and factors that may impact bioavailability and turnover. [30-40 min MM or AL]

Readings: Be prepared to discuss Table 4 of Prentice et al, which shows associations between energy intake and different types of cancer before and after biomarker calibration.
Learning objectives: Review biomarker media reflecting dietary intakes (blood, urine, adipose tissue, nails, hair), the interpretation of different types of biomarkers (concentration, recovery, replacement), and factors that influence biomarker variability. Describe the use of biomarkers to validate, calibrate and substitute for intake estimates, and limitations such as the absence of reliable markers for many diet components.

Required readings:
-Hu, Obesity Epidemiology, pp 88-100

Suggested readings/resources for future reference:

PART 4 (MEASURES): ASSESSMENT OF PHYSICAL ACTIVITY (ENERGY EXPENDITURE)

10: Tuesday Feb 11

[10a] Physical activity assessment and analysis: Critical review of subjective and objective methods for measuring different types of physical activity and sedentarism [40 min MM].

Learning objectives: Review of main methods for assessing self-reported and objective measures of physical activity and inactivity (recalls, records and other questionnaires), as well as objective measures activity (pedometers, accelerometers, heart rate monitoring, doubly-labeled water). Critical assessment of the strengths and limitations of alternative approaches.

Required readings:

Suggested readings:

Homework assignment: Become familiar with accessing the statistical analysis software STATA via the UNC virtual computing lab, which we will begin to use in the next class. https://vcl.unc.edu/index.php?mode=selectauth

Begin group homework assignment 3 (due Feb 21): Students will begin in class a short exercise in which they will evaluate the ability of alternative physical activity questionnaires to rank subjects with respect to activity-related energy expenditure, compared with more detailed data from an activity diary.

PART 5 (DATA ANALYSIS): ANALYZING DATA TO ESTIMATE ASSOCIATIONS

11: Thursday Feb 13

[11a] Introduction to data analysis issues: Integrating hypothesis generation, design and analysis [40 min MM].

[11b] Begin data analysis lab project, part 1 (DUE FEB 27): Overview of STATA commands for descriptive analyses. Introduction to descriptive analysis: begin estimating food group intakes from FFQ data, and estimating the prevalence of child overweight [20 minutes, AR with LS and ZW].
Learning objectives: Developing study hypotheses and specific aims; beginning to data analyses.

Required readings: None

Suggested readings:

Turn in homework assignment 2: adapting food composition data for use in a global context.

12: Tuesday Feb 18

[12a] Data analysis and study design continued: Confounding and interactions [20 mins, LS and ZW].

[12b] Group discussion: How might socioeconomic, lifestyle and community factors influence reported intakes and diet-disease associations. —Readings: Kesse et al (especially Figure 1). Be prepared to brainstorm about the types of community and policy as well as individual factors they think may influence patterns and trends in diet and physical activity, and whether/how these factors should be taken into account in study designs and analyses.

Learning objectives: Reinforce understanding of the concepts of confounding and effect modification, how these concepts differ, and how multivariate analyses can try to address these issues. Discuss lifestyle, socioeconomic and sociodemographic (disparities) factors, as well as other dietary variables, as potential confounders in diet-disease research.

Required readings and activities:

Suggested readings:

13: Thursday Feb 20

[13a] Challenges in the analysis of dietary data continued: Introduction to energy adjustment and dietary data validation and calibration [30 min MM].

[13b] Data analysis exercise part 2 (DUE MARCH 6): begin to calculate energy-adjusted intakes using the density method and discuss their interpretation vs. absolute intakes (AR, LS, ZW).

Learning objectives: Overview of alternative methods for adjusting for total energy intake and of how to interpret adjusted intake measures. Introduce the use of alternative dietary measures to calibrate intake data.

Required readings:

Suggested readings:
- Hu text pp 101-108
- Willett text pp 288-298, also 273-288

Turn in group homework assignment 3: physical activity measures.

PART 6 (STUDY DESIGNS): IMPLICATIONS OF STUDY DESIGNS FOR INTERPRETATION

14: Tuesday Feb 25

[14a] Study designs 1: Ecological, cohort, case-control and cross-sectional studies: Strengths and weaknesses of different designs to keep in mind when evaluating the literature [30-40 min MM or TAs].
Continue work on data analysis exercise part 2 (DUE MARCH 6): energy-adjusted intakes using the density method and discuss their interpretation vs. absolute intakes (AR, LS, ZW).

Learning objectives: Reinforce the potential impact of issue including basic designs, sample selectivity (poor response rates, loss to follow-up, missing data) and information bias (recall bias, measurement error, systematic misreporting) on estimates of diet-disease relationships.

Required readings:

Suggested readings/resources for future reference:

15: Thursday Feb 27

Data analysis lab project, part 3 (DUE MARCH 6): (i) begin to estimate the bivariate association between intakes of these food groups and child overweight. (i) multivariate analysis of the association between selected food groups and child obesity (AR, AL, ZW).

Turn in data analysis lab project, part 1.

16: Tuesday Mar 4

Evaluating a nutrition epidemiology study: Students will discuss tools to evaluate a nutrition epidemiological study, including use of the STROBE guidelines, building on issues addressed in class to date (e.g. study design, measures used, error and bias, confounding) [MM].

Required readings:

Begin take-home mid-term, individual assignment: Due March 29.

17: Thursday Mar 6

Study designs 2: Randomized Trials vs. Observational studies (TBA): This session will introduce and reinforce key considerations in developing and evaluating randomized trials and intervention studies, highlighting strengths and limitations of interventions and RCTs relative to observational designs. The lecture will also introduce students to the methods and aims of important nutrition intervention studies such as DASH and DPP.

Learning objectives: Review strengths and limitations of interventions and RCTs relative to observational designs. Highlight the critical importance of the randomization process in RCTs.

Required readings: None

Suggested readings:

Turn in data analysis lab project, part 2.
Spring break, March 7 - 17

18: Tuesday Mar 18

[18a] **Evaluating the Nutrition Epidemiology Literature**: Evaluating the literature to guide policy, practice and new research [MM].

[18b] Students will discuss use of the nutrition evidence library.

Learning objectives: Provide background on important resources related to reviewing and contributing to the body of scientific evidence in nutritional epidemiology.

Required readings:

Suggested readings/resources for future reference:

19: Thursday Mar 20

[19] **Finalize analyses for lab project (DUE APRIL 4)**: Students will complete conducting analyses to identify subjects with implausible energy intakes, and evaluate the effect of excluding or adjusting for implausible energy reporters in their multivariate analysis (AR, AL, ZW).

Hand in take-home mid-term.

20: Tuesday Mar 25

[20] **Presenting findings in nutritional epidemiology**: Continue work on data analysis project—students will begin to develop an abstract and tables/figures to summarize and present their key findings.

PART 7: SPECIAL TOPICS

21: Thursday Mar 27

[20a] **Critical thinking on variability in nutrition measures**.

22: Tuesday Apr 1

[22] **Integrative approaches to epidemiologic research, case study 1 (MM)**: Junk food diets and health – linking biochemistry and mechanisms with research designs and intervention/policy implications. Brief lectures **(mini-guest lecture: Liza Makowski)** and case study discussion.

Learning objectives: Promote critical thinking in linking biochemistry, epidemiology and intervention/policy.

Required readings:

23: Thursday Apr 3

[23] Integrative approaches to epidemiologic research, case study 2 (AL): Sugar sweetened beverages diets and obesity – linking biochemistry and mechanisms with research designs and intervention/policy implications. As a panel of experts in the areas of nutritional biochemistry, epidemiology and intervention/policy, you will be asked to provide perspectives to our school committee regarding the possible mechanisms linking SSB to energy intake and obesity based on your area of expertise. You will also be asked to evaluate the epidemiologic evidence supporting this link, and focusing on evidence that SSB-related policies will lead to a reduction of caloric intake and/or weight loss in school children.

Learning objectives: Promote critical thinking in linking biochemistry, epidemiology and intervention/policy.

Required readings:
Nutritional biochemistry group:

Epidemiology group:

Intervention and policy group:

All:

24: Tuesday Apr 8

[24] Nutrition epidemiology in public health practice. (TBD) Nutritional epidemiology in public health practice: A case study in quantitative considerations for local-level policies related to menu labeling. This case study was motivated by a kind of problem you can encounter as a chronic disease epidemiologist working in a health agency. In evaluating health-related bills, the legislature may request an assessment of policy impact for the local population. We will consider the specific question of menu labeling. Kuo, et al, provides a general illustration of the exercise. In particular, please study table 1 until you understand the logic of their approach. In class, we will evaluate Kuo’s model inputs and assumptions, and consider the effects of input modifications on estimated impact.

Learning objectives: Promote an understanding of the role of nutritional epidemiology in applied public health / public health practice. Issues to consider include how to identify appropriate data sources, how to summarize and evaluate the evidence base, how to apply evidence to the relevant population, including how to quantify potential impact of proposed policies on populations.

Required readings:

25: Thursday Apr 10

[25] Review of data analysis project. We will review and discuss lessons learned from the laboratory project designed to introduce students to data analysis considerations in nutritional epidemiology. Students will discuss how they would design and analyze data from a new project on the study topic.

Learning objectives: Provide a framework for discussing how to promote scientific progress in nutritional epidemiology.

26: Tuesday Apr 15

[26] Nutrition monitoring and surveillance [Guest lecturer, Barry Popkin]: Sources of global and local nutritional surveillance data and their strengths and limitations

27: Thursday Apr 17

[27] Critical thinking global case study: Nutritional epidemiology studies in a global context (TBA). How do we adapt to international nutritional cultures and conditions? How do we develop and test appropriate hypotheses for these contexts building on prior evidence from both epidemiology and biochemistry? Case study: The Ministry of Health in Ecuador is interested in looking at respiratory health (asthma) and diet as a protective factor. They have proposed initiating a prospective longitudinal cohort study of elderly (65+ y) men and women in Ecuador. You have been asked to consult on the development of an FFQ for assessing dietary intakes at baseline in the elderly. No FFQ currently exists in Ecuador. While you may or may not agree with this choice of dietary assessment instrument, it is all that the Ministry of Health can afford at this time (it is costly to train dieticians to collect multiple standardized 24-h recalls as well as to subsequently develop methods to convert data on many hundreds of food and beverages reported in recalls to estimate energy and nutrient intakes). Objective: Based on the research question, the objective is to measure intakes of key antioxidant nutrients, zinc, vitamin D, and other nutrients thought to be potentially most relevant for respiratory health outcomes (infections, wheeze, asthma), a public health concern for this age group in Ecuador. It is also important to note that there may be regional and seasonal differences in dietary intakes. Your task during the class period will be to develop a proposal for how you will develop the FFQ and design a study to validate it.

Learning objectives: Promote critical thinking on adapting to the global context in conducting nutritional epidemiology research. Promote integrative thinking on multi-disciplinary testing of hypotheses.

Required readings:
-Examples of Ecuadorian diet: http://www.thelatinkitchen.com/recipe-origin/ecuadorian-food-recipes
-Pennington JAT. Applications of food composition data: Data sources and considerations for use Journal of Food Composition and Analysis 21 (2008) S3–S12 [See especially sections 2.3 2.4 and 2.5]

28: Tuesday Apr 22

Learning objectives: Provide background on how genetic factors may be an important influence on associations between nutritional exposures and health outcomes, and describe different approaches to gene-environment analysis. Briefly introduce the potential relevance of nutritional influences on epigenetics for some research topics.
BEGIN TAKE HOME FINAL EXAM: CRITICAL COMPARATIVE ANALYSIS OF NUTRITIONAL EPIDEMIOLOGY LITERATURE

29: Thursday Apr 24

FINAL PAPER DUE MAY 1