CANCER EPIDEMIOLOGY AND PATHOGENESIS (EPID 770)

FALL 2009

Tues/Thurs 12:30-1:45, McGavran Greenberg 1304
Instructor: Melissa Troester, Ph.D., M.P.H.
Office: 2104H McGavran Greenberg
Phone: (919) 966-7408
Email: troester@unc.edu

COURSE OBJECTIVE

The objective of this course is to provide fundamental knowledge about the epidemiologic and biological concepts of cancer epidemiology, and then to encourage critical thinking about these concepts. The course will cover cancer statistics, major risk factors for cancer, mechanisms of carcinogenesis, biomarkers in cancer research, as well as some current controversies in cancer research. Students will gain a background knowledge of cancer biology and epidemiology needed to interpret and critique cancer epidemiology research.

RECOMMENDED TEXTBOOKS

There is no assigned textbook for the course, but there are a few optional texts available in the bookstore that may be useful as references:

ASSIGNED READINGS

Assigned readings and study questions will be provided for each class. These readings and questions will be available through blackboard.
COURSE REQUIREMENTS

Class participation & study questions (20%)

Written Assignments (2 X 20% each)

Final Exam (40%)

WRITTEN ASSIGNMENTS

Two peer-review critiques will be written during the semester on an assigned article. The article will be taken from the current literature and the written critique should resemble a critique that would be written as a reviewer for a scientific journal. The review should begin with a summary of the purpose/scientific objective of the article and proceed to discuss strengths as well as areas for improvement. It is often helpful to divide the review into major and minor criticisms. Where appropriate, page, paragraph, and line numbers should be indicated for each major and minor point made in the critique. Students wishing to receive feedback on their first critique may submit the critique two weeks prior to the due date.

FINAL EXAM

A final exam will be administered on the last day of class during the regularly scheduled class time. The in-class exam will cover readings and lectures from the semester and will consist of multiple choice, true-false, and short answer questions. It will be open-book, but timed and must be completed within the regular class period.
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tues Aug 25</td>
<td>Course Introduction</td>
</tr>
<tr>
<td>Thurs Aug 27</td>
<td>Cancer Statistics: Overview</td>
</tr>
<tr>
<td>Tues Sep 1</td>
<td>Cancer Statistics: Incidence</td>
</tr>
<tr>
<td>Thurs Sep 3</td>
<td>Cancer Statistics: Mortality</td>
</tr>
<tr>
<td>Tues Sep 8</td>
<td>Cancer Statistics: Survival</td>
</tr>
<tr>
<td>Thurs Sep 10</td>
<td>Induction and Latent Periods (Millikan)</td>
</tr>
<tr>
<td>Tues Sep 15</td>
<td>Cancer Risk Factors: Age</td>
</tr>
<tr>
<td>Thurs Sep 17</td>
<td>Cancer Risk Factors: Family History</td>
</tr>
<tr>
<td>Tues Sep 22</td>
<td>Cancer Risk Factors: Tobacco</td>
</tr>
<tr>
<td>Thurs Sep 24</td>
<td>Cancer Risk Factors: Alcohol</td>
</tr>
</tbody>
</table>

Assignment 1 due

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tues Sep 29</td>
<td>Cancer Risk Factors: Radiation (Richardson)</td>
</tr>
<tr>
<td>Thurs Oct 1</td>
<td>Cancer Risk Factors: Hormones</td>
</tr>
<tr>
<td>Tues Oct 6</td>
<td>Cancer Risk Factors: Obesity (Cleveland)</td>
</tr>
<tr>
<td>Thurs Oct 8</td>
<td>Cancer Risk Factors: Infectious Agents (Smith)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tues Oct 13</td>
<td>Animal Models (Millikan)</td>
</tr>
<tr>
<td>Thurs Oct 15</td>
<td>Mutations in Cancer</td>
</tr>
<tr>
<td>Tues Oct 20</td>
<td>Epigenetic Mechanisms – Methylation (Swift-Scanlan)</td>
</tr>
</tbody>
</table>
Thurs Oct 22 Fall Break
18 Tues Oct 27 Epigenetic Mechanisms -- microRNA
19 Thurs Oct 29 Field cancerization/ intraepithelial neoplasia

BIOMARKERS IN CANCER EPIDEMIOLOGY
20 Tues Nov 3 Biomarkers: Overview
21 Thurs Nov 5 Biomarker Example: In Class Group Discussion
22 Tues Nov 10 Biomarkers: Design and Biases (Ransohoff)

Assignment 2 due

CONTROVERSIES IN CANCER PATHOGENESIS
23 Thurs Nov 12 Observation vs. Experimentation
24 Tues Nov 17 Microarrays
25 Thurs Nov 19 Communicating Genomic Risks (Noel Brewer)
26 Tues Nov 24 Chemoprevention
 Thurs Nov 26 Thanksgiving Holiday
27 Tues Dec 1 Stem Cells
28 Thurs Dec 3 Course Summary and Future Directions
29 Tues Dec 8 Final Exam
READING LIST

COURSE INTRODUCTION

CANCER STATISTICS

Overview

Incidence

Mortality

Survival

Induction and Latent Periods

CANCER ETIOLOGY

Age

Family History

Tobacco

Alcohol

